Skip to main content
Log in

Microstructural behaviour and mechanical hardening in a Cu-Ni-Cr alloy

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this investigation electron microscopy and diffraction have been employed to characterize the development of the modulated structures and associated sideband phenomena in a Cu-31.6 Ni-1.7Cr alloy and the microstructural behaviour has been correlated with the age-hardening response. The microstructural behaviour is consistent with the notion of spinodal decomposition of a rather asymmetric alloy within the ternary miscibility gap in the temperature range 650 to 750° C. The modulated structures which form during precipitation tend to undergo a morphological change during subsequent coarsening involving the sequence: cuboids → rods → platelets (or rafts); the driving force for this transformation is the minimization of the surface and strain energy of the coherent two-phase mixtures. Precipitate-free or denuded zones have been observed to develop after prolonged ageing apparently resulting from preferential loss of coherency and coarsening of particles in the vicinity of the grain boundaries. This microstructural heterogeneity gives rise to a “discontinuous coarsening” reaction eventually involving the migration of high-angle boundaries. The mechanical strengthening accompanying the formation of the aligned and periodic precipitate morphologies can be accounted for quantitatively in terms of the interaction of dislocations with the internal stress fields associated with the coherent precipitates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. N. Bradley, Inst. Met. Rev. 17 (1972) 81.

    Google Scholar 

  2. S. P. Gupta, A. A. Johnson and K. Mukherjee, Mater. Sci. Eng. 9 (1972) 97.

    Google Scholar 

  3. S. P. Gupta and K. Mukherjee, 10 (1972) 43.

    Google Scholar 

  4. F. A. Badia, G. N. Kirby and J. K. Mihalisin, ASM Transactions Quarterly 60 (1967) 395.

    Google Scholar 

  5. J. R. Mihalisin, E. L. Huston and F. A. Badia, Second International Conference on the Strength of Metals, Vol. II, (ASM, 1970) p. 679.

  6. J. L. Meijering, G. W. Rathenau, M. G. Steeg and B. Braun, J. Inst. Metals 84 (1955) 118.

    Google Scholar 

  7. J. L. Meijering, Acta Met. 5 (1957) 257.

    Google Scholar 

  8. J. Manenc, 6 (1958) 145.

    Google Scholar 

  9. A. J. Bradley, Proc. Phys. Soc. 52 (1940) 80.

    Google Scholar 

  10. V. Daniel and H. Lipson, Proc. Roy. Soc. A181 (1943) 368.

    Google Scholar 

  11. A182 (1944) 378.

    Google Scholar 

  12. H. Kreye and P. Pech, Z. Metallkde 64 (1973) 765.

    Google Scholar 

  13. J. E. Morral and J. W. Cahn, Acta Met. 19 (1971) 1037.

    Google Scholar 

  14. J. E. Morral, 20 (1972) 1061.

    Google Scholar 

  15. 20 (1972) 1069.

    Google Scholar 

  16. D. De Fontaine, J. Phys. Chem. Solids 33 (1972) 297.

    Google Scholar 

  17. J. L. Meijering, Phillips Res. Rep. 5 (1950) 333.

    Google Scholar 

  18. 6 (1951) 183.

    Google Scholar 

  19. L. H. Schwartz, S. Mahajan and J. T. Plewes, Acta Met. 22 (1974) 601.

    Google Scholar 

  20. L. H. Schwartz and J. T. Plewes, 22 (1974) 911.

    Google Scholar 

  21. A. Ardell, Phil. Mag. 16 (1967) 147.

    Google Scholar 

  22. S. L. Sass, T. Mura and J. B. Cohen, 16 (1967) 679.

    Google Scholar 

  23. R. Cadoret and P. Delavignette, Phys. Status Solidi 32 (1969) 853.

    Google Scholar 

  24. E. P. Butler and G. Thomas, Acta Met. 18 (1970) 347.

    Google Scholar 

  25. R. J. Livak and G. Thomas, 19 (1971) 497.

    Google Scholar 

  26. T. Hakkarainen, Ph.D. Thesis, Helsinki University of Technology, Helsinki (1971).

    Google Scholar 

  27. D. E. Laughlin and J. W. Cahn, Acta Met. 23 (1975) 329.

    Google Scholar 

  28. A. Datta and W. A. Soffa, 24 (1976) 987.

    Google Scholar 

  29. S. L. Sass and J. B. Cohen, Trans. TMS-AIME 242 (1968) 1764.

    Google Scholar 

  30. K. Saito and R. Watanabe, Nat. Res. Inst. Metals 11 (1969) 153.

    Google Scholar 

  31. P. E. J. Flewitt, Acta Met. 22 (1974) 47.

    Google Scholar 

  32. M. E. Hargreaves, Acta Cryst. 4 (1951) 301.

    Google Scholar 

  33. D. De Fontaine, “Local Atomic Arrangements Studied by X-ray Diffraction,” edited by J. B. Cohen and J. E. Hilliard, (Gordon and Breach, New York, 1966) p. 51.

    Google Scholar 

  34. A. J. Ardell and R. B. Nicholson, Acta Met. 14 (1966) 1295.

    Google Scholar 

  35. A. G. Khachaturyan, Phys. Status Solidi 35 (1969) 119.

    Google Scholar 

  36. A. G. Khachaturyan, IEEE Trans. Magnetics 6 (1970) 233.

    Google Scholar 

  37. I. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solids 19 (1961) 35.

    Google Scholar 

  38. C. Wagner, Z. Electrochem. 65 (1961) 581.

    Google Scholar 

  39. A. J. Ardell, Met. Trans. 1 (1970) 525.

    Google Scholar 

  40. P. K. Rastogi and A. J. Ardell, Acta Met. 19 (1971) 321.

    Google Scholar 

  41. D. J. Chellman and A. J. Ardell, 22 (1974) 577.

    Google Scholar 

  42. J. W. Cahn, “The Mechanism of Phase Transformations in Crystalline Solids,” (Institute of Metals, London, 1969) p. 1.

    Google Scholar 

  43. J. Higgins, R. B. Nicholson and P. Wilkes, Acta Met. 22 (1974) 201.

    Google Scholar 

  44. T. H. Dekeijser, Scripta Met. 9 (1975) 193.

    Google Scholar 

  45. G. W. Lorimer and R. B. Nicholson, Acta Met. 14 (1966) 1009.

    Google Scholar 

  46. R. B. Nicholson, J. Inst Metals 95 (1967) 91.

    Google Scholar 

  47. D. W. Pashley, M. H. Jacobs and J. T. Vietz, Phil. Mag. 16 (1967) 51.

    Google Scholar 

  48. M. H. Jacobs and D. W. Pashley, “The Mechanism of Phase Transformations in Crystalline Solids,” (Institute of Metals, 1969) p. 43.

  49. E. A. Starke, J. Metals 22 (1970) 54.

    Google Scholar 

  50. J. D. Livington and J. W. Cahn, Acta Met. 22 (1974) 495.

    Google Scholar 

  51. R. Gronsky and G. Thomas, 23 (1975) 1163.

    Google Scholar 

  52. D. B. Willians and J. W. Edington, 24 (1976) 323.

    Google Scholar 

  53. R. Fournelle and J. B. Clark, Met. Trans. 3 (1972) 2757.

    Google Scholar 

  54. J. W. Cahn, Acta Met. 11 (1963) 1275.

    Google Scholar 

  55. N. F. Mott and F. R. N. Nabarro, Proc. Phys. Soc. 52 (1940) 86.

    Google Scholar 

  56. E. Orowan, “Symposium on Internal Stresses in Metals and Alloys,” (Institute of Metals, 1948) p. 451.

  57. A. Kelly and G. W. Groves, “Crystallography and Crystal Defects,” (Addison-Wesley, Reading, Mass., 1970) p. 163.

    Google Scholar 

  58. V. Gerold and H. Haberkorn, Phys. Status Solidi 16 (1966) 675.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chou, A., Datta, A., Meier, G.H. et al. Microstructural behaviour and mechanical hardening in a Cu-Ni-Cr alloy. J Mater Sci 13, 541–552 (1978). https://doi.org/10.1007/BF00541804

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00541804

Keywords

Navigation