Skip to main content
Log in

Decomposition of the interaction energy between metal cations and water or ammonia with inclusion of counterpoise corrections to the interaction energy terms

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Summary

Ab initio calculations for complexes of some metal cations (Li+, Na+, Be2+, Mg2+, Zn2+, Al3+) with water or ammonia as ligands were performed employing the MINI-1 basis set. The counterpoise-corrected components of the interaction energy were analyzed as a function of the intersystem distance. Results are compared with the corresponding 4-31G and 6-31G* data for the Li+ and Be2+ complexes. The analysis contributes to both an evaluation of the quantum chemical description and a general understanding of this type of interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Google Scholar 

  2. Hobza P, Zahradník R (1988) Chem Rev 88:871

    Google Scholar 

  3. Cammi R, Bonaccorsi R, Tomasi J (1985) Theor Chim Acta 68:271

    Google Scholar 

  4. Kitaura K, Morokuma K (1985) Int J Quantum Chem 10, 325

    Google Scholar 

  5. Tolosa S, Esperilla JJ, Espinosa J, Olivares del Valle FJ (1988) Chem Phys 127:65

    Google Scholar 

  6. Huzinaga S (ed) (1984) Gaussian basis sets for molecular calculations. Elsevier, Amsterdam

    Google Scholar 

  7. Hobza P, Sauer J (1984) Theor Chim Acta 65:279

    Google Scholar 

  8. Sauer J, Hobza P (1984) Theor Chim Acta 65, 291

    Google Scholar 

  9. Hofmann H-J, Hobza P, Cammi R, Tomasi J, Zahradík R (1989) J Mol Struct (Theochem) in press

  10. Cammi R, Tomasi J (1986) Theor Chim Acta 69:11

    Google Scholar 

  11. Bonaccorsi R, Cammi R, Tomasi J (1986) Int J Quantum Chem 29:73

    Google Scholar 

  12. Cammi R, Olivares del Valle FJ, Tomasi J (1986) Chem Phys 122:63

    Google Scholar 

  13. Umeyama H, Kitaura K, Morokuma K (1975) Chem Phys Letters 36:11

    Google Scholar 

  14. Tatewaki H, Huzinaga S (1980) J Comput Chem 1:205

    Google Scholar 

  15. Clementi E, Popkie H (1972) J Chem Phys 57:1077

    Google Scholar 

  16. Kistenmacher H, Popkie H, Clementi E (1973) J Chem Phys 58:1689

    Google Scholar 

  17. Diercksen GHF, Kraemer WP, Roos BO (1975) Theor Chim Acta 36:249

    Google Scholar 

  18. Corongiu G, Clementi E (1979) J Chem Phys 69:4885

    Google Scholar 

  19. Dacre PD (1984) Mol Phys 51:633

    Google Scholar 

  20. Latajka Z, Scheiner S (1985) Chem Phys 98:59

    Google Scholar 

  21. Karpfen A, Schuster P (1985) Ion-molecule interactions. A quantum chemical approach to primary solvation. In: Dogonadze RR, Kálmán E, Kornyshev AA, Ulstrup J (eds) The chemical physics of solvation, part A. Elsevier, Amsterdam, p 265

    Google Scholar 

  22. Del Bene JD (1986) J Comput Chem 7:259

    Google Scholar 

  23. Probst MM, Limtrakul IP, Rode BM (1986) Chem Phys Letters 132:370

    Google Scholar 

  24. Szcześniak MM, Scheiner S (1988) Coll Czech Chem Commun 53:2214

    Google Scholar 

  25. Davy RD, Hall MB (1988) Inorg Chem 27:1417

    Google Scholar 

  26. Alagona G, Cammi R, Ghio G, Tomasi J (1987) Int J Quantum Chem 32:207

    Google Scholar 

  27. Alagona G, Cammi R, Ghio G, Tomasi J (1987) Int J Quantum Chem 32:227

    Google Scholar 

  28. Alagona G, Cammi R, Ghio G, Tomasi J (1987) A reappraisal of the hydrogen bonding interaction obtained by combining energy decomposition analyses and counterpoise corrections. In: Maruani J (ed) Molecules in physics, chemistry and biology, vol II. Reidel, Dordrecht, pp 507–559

    Google Scholar 

  29. Alagona G, Ghio C, Tomasi J (1989) J Phys Chem 93:5401

    Google Scholar 

  30. Howard BB (1963) J Chem Phys 39:2524

    Google Scholar 

  31. Pullman A (1977) In: Pullman B, Goldblum N (eds) Metal-ligand interactions in organic chemistry and biochemistry, part I. Reidel, Dordrecht, p 1

    Google Scholar 

  32. Scrocco E, Tomasi J (1973) Top Curr Chem 42:95

    Google Scholar 

  33. Scrocco E, Tomasi J (1978) Adv Quantum Chem 11:115

    Google Scholar 

  34. Boys SF (1966) In: Löwdin PO (ed) Quantum theory of atoms, molecules and the solid state. Academic Press, New York, p 253

    Google Scholar 

  35. Dacre PD (1987) J Chem Phys 80:5677

    Google Scholar 

  36. Bonaccorsi R, Scrocco E, Tomasi J (1976) Theor Chim Acta 43;63

    Google Scholar 

  37. J Tomasi (1981) In: Politzer P, Truhlar D (eds) Chemical applications of atomic and molecular electrostatic potentials. Plenum Press, New York, p 257

    Google Scholar 

  38. Miller Francl M (1985) J Phys Chem 89:428

    Google Scholar 

  39. Miller Francl M (1985) QCPE n. 490

  40. Alagona G, Bonaccorsi R, Ghio C, Tomasi J (1986) J Mol Struct (Theochem) 135:39

    Google Scholar 

  41. Bonaccorsi R, Ghio C, Tomasi J (1984) Int J Quantum Chem 26:637

    Google Scholar 

  42. Latajka Z, Scheiner S (1989) J Mol Struct (Theochem), in press

  43. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

    Google Scholar 

  44. Cimiraglia R, Persico M, Hofmann H-J: unpublished results

  45. Bonaccorsi R, Scrocco E, Tomasi J (1976) Theor Chim Acta 43:63

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cammi, R., Hofmann, HJ. & Tomasi, J. Decomposition of the interaction energy between metal cations and water or ammonia with inclusion of counterpoise corrections to the interaction energy terms. Theoret. Chim. Acta 76, 297–313 (1989). https://doi.org/10.1007/BF00529931

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00529931

Key words

Navigation