Skip to main content
Log in

Enterococcus faecalis cytolysin and lactocin S of Lactobacillus sake

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Strains of Enterococcus faecalis and Lactobacillus sake have been found to express lantibiotics with unusual properties. The enterococcal lantibiotic is unusual in that it consists of two dissimilar subunits, both putatively containing modifications consistent with those found in other lantibiotics. The enterococal lantibiotic is also unusual in the number of proteolytic steps involved in secretion signal removal and activation. Moreover, it has been observed to contribute to enterococcal disease in humans and in animal models. Structrural studies of lactocin S, expressed by a strain of L. sake highlight unique properties including the presence of D-alanine within its structure, and a protease putatively responsible for lactocin S secretion signal peptide removal which, itself, lacks a signal or propeptide sequence. Despite the unusual properties of each of these lantibiotics, the operons encoding each, and accompanying auxiliary functions, are collinear suggeting a common ancestry. The accretion of interdigitating DNA sequences between genes encoded within the lactocin S determinant are unique to that determinant, however, and are of unknown function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abildgaard CIM (1992) Lactocin S, a lanthionine-containing bacteriocin from Lactobacillus sake. Ph.D. thesis, Agricultural University of Norway, As, Norway

  • Bogie CP, Hancock LE & Gilmore MS (1995) The Enterococusfaecalis cytolysin determinant and its relationship to those encoding lantibiotics. In: Ferretti JJ, Gilmore MS & Klaenhammer T (Eds) Genetics of Streptococci, Enterococci and Lactococci Molecular Biology of Streptococci. In press

  • Brock TD & Davie JM (1963) Probable identity of a group D hemolysin with a bacteriocine. J. Bacteriol. 86: 708–712

    PubMed  Google Scholar 

  • Brock TD, Peacher B & Pierson D (1963) Survey of the bacteriocines of enterococci. J. Bacteriol. 86: 702–707

    PubMed  Google Scholar 

  • Chow JW, Thai LA, Perri MB, Vazquez JA, Donabedian SM, Clewell DB & Zervos MJ (1993) Plasmid-associated hemolysin and aggregation substance production contributes to virulence in experimental enterococcal endocarditis. Antimicrob. Agents Chemother. 37: 2474–2477

    PubMed  Google Scholar 

  • Fath MJ & Kolter R (1993) ABC transporters: Bacterial exporters. Microbiol. Rev. 57: 995–1017

    PubMed  Google Scholar 

  • Clewell DB, Tomich PK, Gawron-Burke MC, Franke AE, Yagi Y & An FY (1982) Mapping of Streptococcus faecalis plasmids pAD1 and pAD2 and studies relating to transposition of Tn917. J. Bacteriol. 152: 1220–1230

    PubMed  Google Scholar 

  • Gilmore MS, Segarra RA, Booth MC, Bogie CP, Hall LR & Clewell DB. Genetic structure of the Enterococcus faecalis plasmid pAD1-encoded cytolytic toxin system and its relationship to lantibiotic determinants. J. Bacteriol. 176: 7335–7344

  • Granato PA & Jackson RW (1969) Bicomponent nature of lysin from Streptococcus zymo genes. J. Bacteriol. 100: 856–868

    Google Scholar 

  • Haandrikman AJ, vanLeeuwen C, Kok J, Vos P, deVos WM & Venema G (1990) Insertion elements on lactococcal proteinase plasmids. Appl. Environ. Microbiol. 56: 1890–1896

    PubMed  Google Scholar 

  • Higgins CF, Causton HC, Dance GSC & Mudd EA (1993) The role of the 3′ end in mRNA stability and decay, pp 11–30. In: Belasco J & Brawerman G (Eds) Control of messenger RNA stability Academic Press, San Diego

    Google Scholar 

  • Huycke MM, Gilmore MS, Jett BD & Booth JL (1992) Transfer of pheromone-inducible plasmids between Enterococcus faecalis in the Syrian hamster gastrointestinal tract. J. Infect. Dis. 166: 1188–1191

    PubMed  Google Scholar 

  • Huycke MM, Joyce WA & Gilmore MS (1995) Enterococcus faecalis cytolysin without effect on the intestinal growth of susceptible enterococci in mice. J. Infect. Dis., 172: 273–276

    PubMed  Google Scholar 

  • Huycke MM, Spiegel CA & Gilmore MS (1991) Bacteremia caused by hemolytic, high-level gentamicin-resistant Enterococcus faecalis. Antimicrob. Agents Chemother. 35: 1626–1634

    PubMed  Google Scholar 

  • Ike Y, Clewell DB, Segarra RA & Gilmore MS (1990) Genetic analysis of the pAD1 hemolysin/bacteriocin determinant in Enterococcus faecalis: Tn917 insertional mutagenesis and cloning. J. Bacteriol. 172: 155–163

    PubMed  Google Scholar 

  • Ike Y, Hashimoto H & Clewell DB (1984) Hemolysin of Streptococcus faecalis subspecies zymogenes contributes to virulence in mice. Infect. Immun. 45: 528–530

    PubMed  Google Scholar 

  • Ike Y, Hashimoto H & Clewell DB (1987) High incidence of hemolysin production by Enterococcus (Streptococcus) faecalis strains associated with human parenteral infections. J. Clin. Microbiol. 25: 1524–1528

    PubMed  Google Scholar 

  • Jett BD, Huycke MM & Gilmore MS (1994) Virulence of enterococci. Clin. Microbiol. Rev. 7: 462–478

    PubMed  Google Scholar 

  • Jett BD, Jensen HG, Nordquist RE & Gilmore MS (1992) Contribution of the pAD1-encoded cytolysin to the severity of experimental Enterococcus faecalis endophthalmitis. Infect. Immun 60: 2445–2452

    PubMed  Google Scholar 

  • Jett BD, Jensen HG, Atkuri RV & Gilmore MS (1995) Evaluation of therapeutic measures for treating endophthalmitis caused by isogenic toxin-producing and toxin-nonproducing Enterococcus faecalis strains. Invest. Ophthalmol. Vis. Sci. 36: 9–15

    PubMed  Google Scholar 

  • Kreil G (1994) Peptides containing a D-amino acid from frogs and molluses. J. Biol. Chem. 269: 10967–10970

    PubMed  Google Scholar 

  • Mørtvedt CI & Nes IF (1990) Plasmid-associated bacteriocin production by a Lactobacillus sake strain. J. Gen. Microbiol. 136: 1601–1607

    Google Scholar 

  • Mørvedt CI, Nissen-Meyer J, Sletten K & Nes IF (1991) Purification and Amino Acid Sequence of Lactocin S, a Bacteriocin Produced by Lactobacillus sake L45. Appl. Environ. Microbiol. 57: 1829–1834

    PubMed  Google Scholar 

  • Nes IF, Mørtvedt CI, Nissen-Meyer J & Skaugen M (1994) Lactocin S, a lanthionine-containing bacteriocin isolated from Lactobacillus sake L45, p. In: DeVuyst L & Vandamme EJ (Eds) Bacteriocins of lactic acid bacteria. Blackie Academic and Professional, Glasgow

    Google Scholar 

  • Pouwels PH & Leer RJ (1993) Genetis of Lactobacilli. Plasmids and gene expression. Antonie van Leeuwenhoek 64: 83–105

    Google Scholar 

  • Rince A, Dufour A, LePogam S, Thuault D, Bourgeois CM & LePennec JP (1994) Cloning, expression, and nucleotide sequence of genes involved in production of lactococcin DR, a bacteriocin from Lactococcus lactis subsp. lactis. Appl. Environ. Microbiol. 60: 1652–1657

    PubMed  Google Scholar 

  • Sahl H-G (1991) Pore formation in bacterial membranes by cationic lantibiotics, p. 347–358. In: Jung G & Sahl H-G (Eds) Nisin and Novel Lantibiotics. ESCOM, Leiden

    Google Scholar 

  • Schnell N, Entian K-D, Schneider U, Götz F, Zähner H, Kellner R & Jung G (1988) Prepeptide sequence of epidermin, a ribosomally synthesized antibiotic with four sulphide-rings. Nature 333: 276–278

    Article  PubMed  Google Scholar 

  • Segarra RA, Booth MC, Morales DA, Huycke MM & Gilmore MS (1991) Molecular characterization of the Enterococcus faecalis cytolysin activator. Infect. Immun. 59: 1239–1246

    PubMed  Google Scholar 

  • Siezen RJ, deVos WM, Leunissen JAM & Dijkstra BW (1991) Homology modeling and protein engineering strategy of subtilases, the family of subtilisin-like serine proteinases. Protein Eng 4: 719–737

    PubMed  Google Scholar 

  • Skaugen M & Nes IF (1994) Transposition in Lactobacillus sake and its abolition of lactocin S production by insertion of IS1163, a new member of the IS3 family. Appl. Environ. Microbiol. 60: 2818–2825

    PubMed  Google Scholar 

  • Skaugen M, Nissen-Meyer J, Jung G, Stevanovic S, Sletten K Abildgaard CIM & Nes IF (1994) In vivo conversion of L-serine to D-alanine in a ribosomally synthesized polypeptide. J. Biol. Chem. 269: 27183–27185

    PubMed  Google Scholar 

  • Skaugen M, Abildgaard CIM & Nes IF. Analysis of genes involved in the biosynthesis of the lantibiotic lactocin S. Manuscript in preparation.

  • Todd EW (1934) A comparative serological study of streptolysins derived from human and from animal infections, with notes on pneumococcalhaemolysin, tetanolysin and staphylococcus toxin. J. Pathol. Bacteriol. 39: 299–321

    Google Scholar 

  • VonHeijne G (1983) Pattern of amino acids near signal-sequence cleavage sites. Eur. J. Biochem. 133: 17–21

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilmore, M.S., Skaugen, M. & Nes, I. Enterococcus faecalis cytolysin and lactocin S of Lactobacillus sake . Antonie van Leeuwenhoek 69, 129–138 (1996). https://doi.org/10.1007/BF00399418

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00399418

Key words

Navigation