Skip to main content
Log in

Micropuncture study of renal transtubular concentration gradients of sodium and potassium in adrenalectomized rats

  • Published:
Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere Aims and scope Submit manuscript

Summary

Samples of proximal and distal tubular fluid were collected from control rats and from adrenalectomized animals maintained on 0.9% NaCl solution. Plasma and tubular fluid were analyzed for Na22 after adequate isotope equilibration and for Na and K by microflamephotometry. Similar analyses were performed in stationary microperfusion experiments in which the magnitude of the limiting concentration gradients for Na and K was estimated. Transtubular electrical potential differences were measured by means of glass-microelectrodes. A comparison of proximal tubular concentration gradients showed no significant differences between the control and the adrenalectomized rats for either Na or K. In contrast, the ability of the distal tubular epithelium to develop concentration gradients for Na and K was significantly reduced by adrenalectomy. This functional impairment could be reversed by the administration of d-aldosterone. No changes in proximal and distal transtubular electrical potential differences were observed in the various experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  1. Barger, A. C., R. D. Berlin, and J. F. Tulenko: Infusion of aldosterone, 9α-fluorohydrocortisone and antidiuretic hormone into the renal artery of normal and adrenalectomized unanesthetized dogs: effect on electrolyte and water excretion. Endocrinology 62, 804 (1958).

    Google Scholar 

  2. Crabbé, J.: The role of aldosterone in the renal concentration mechanism in man. Clin. Sci. 23, 39 (1962).

    Google Scholar 

  3. — The Na-retaining action of aldosterone. Ed. Arscia S.A. Presses Acad. Europ. S.C., Bruxelles 1963.

    Google Scholar 

  4. — Effects of adrenocortical steroids on active sodium transport by the urinary bladder and ventral skin of amphibia. In: Hormones and the Kidney, p. 75. London and New York: Acad. Press 1963.

    Google Scholar 

  5. —, and G. Nichols jr.: Effects of adrenalectomy and aldosterone on sodium concentration in renal medulla of hydropenic rats. Proc. Soc. exp. Biol. (N. Y.) 101, 168 (1959).

    Google Scholar 

  6. — Effects of adrenalectomy, aldosterone and dehydration on electrolyte metabolism of rat renal cortex slices. Amer. J. Physiol. 199, 871 (1960).

    Google Scholar 

  7. Eigler, F. W.: Short-circuit current measurements in proximal tubule of Necturus kidney. Amer. J. Physiol. 201, 157 (1961).

    Google Scholar 

  8. Ganong, W. F., and P. J. Mulrow: Rate of change in sodium and potassium excretion after injection of aldosterone into the aorta and renal artery of the dog. Amer. J. Physiol. 195, 337 (1958).

    Google Scholar 

  9. Gaunt, R.: Water diuresis and water intoxication in relation to the adrenal cortex. Endocrinology 34, 400 (1944).

    Google Scholar 

  10. —, and J. J. Chart: Mineralocorticoid action of adrenocortical hormones. In: Handb. exp. Pharm., Erg. Werk, Bd. 14, Teil 1, S. 514. Berlin, Göttingen, Heidelberg: Springer 1962.

    Google Scholar 

  11. Gertz, K. H.: Transtubuläre Natriumchloridflüsse und Permeabilität für Nichtelektrolyte im proximalen und distalen Konvolut der Rattenniere. Pflügers Arch. ges. Physiol. 276, 336 (1963).

    Google Scholar 

  12. Giebisch, G., R. M. Klose, G. Malnic, W. J. Sullivan, and E. E. Windhager: Sodium movement across single perfused proximal tubules of rat kidneys. J. gen. Physiol. 47, 1175 (1964).

    Google Scholar 

  13. — and E. E. Windhager: Micropuncture study of hypertonic sodium chloride loading in the rat. Amer. J. Physiol. 206, 687 (1964).

    Google Scholar 

  14. —, and E. E. Windhager: Renal tubular transfer of sodium, chloride and potassium. Amer. J. Med. 36, 643 (1964).

    Google Scholar 

  15. Goldsmith, C., H. K. Beasley, P. J. Whalley, F. C. Rector, and D. W. Seldin: The effect of salt deprivation on the urinary concentrating mechanism in the dog. J. clin. Invest. 40, 2043 (1961).

    Google Scholar 

  16. Guinnebault, M., et F. Morel: Role de la Surrénale dans les mécanismes de concentration de l'urine. C. R. Acad. Sci. (Paris) 244, 2741 (1957).

    Google Scholar 

  17. Hierholzer, K.: Analyse der Natrium-Transportstörung in der Niere adrenalektomierter Ratten. Untersuchungen am Einzelnephron. Habilitationsschrift, Berlin 1964.

    Google Scholar 

  18. Kashgarian, M., H. Stöckle, C. W. Gottschalk, and K. J. Ullrich: Transtubular electrochemical potentials of sodium and chloride in proximal and distal renal tubules of rats during antidiuresis and water diuresis (Diabetes insipidus). Pflügers Arch. ges. Physiol. 277, 89 (1963).

    Google Scholar 

  19. Kessler, E., R. L. Allen jr., D. Kirman, and H. Strauss: Effect of aldosterone and cortisol on sodium and water content of the rat kidney. Amer. J. Physiol. 207, 109 (1964).

    Google Scholar 

  20. Kruhøffer, P.: Handling of alkali metal ions by the kidney. In. Handb. exp. Pharm., Erg.-Werk, Bd. 13, S. 233. Berlin, Göttingen, Heidelberg: Springer 1960.

    Google Scholar 

  21. Landwehr, D. M., and S. J. Le Brie: Aldosterone stimulation of sodium reabsorption in the loop of Henle. Amer. J. Physiol. (1965), submitted for publication.

  22. Liddle, G. W.: Effect of antiinflammatory steroids on electrolyte metabolism. Ann. N. Y. Acad. Sci. 82, 854 (1959).

    Google Scholar 

  23. Lima, T. de, and M. F. Lockett: An investigation of the actions of aldosterone on perfused cat kidneys, by ureteric stop-flow analysis. Arch. int. Physiol. et Biochem. 71, 83 (1963).

    Google Scholar 

  24. Litchfield, J. B., and P. A. Bott: Micropuncture study of renal excretion of water, Na, K and Cl in the rat. Amer. J. Physiol. 203, 667 (1962).

    Google Scholar 

  25. Maffly, R. H., I. S. Edelman, R. Bogoroch, and G. A. Porter: On the mechanism of action of aldosterone on sodium transport. Proc. nat. Acad. Sci. (Wash.) 50, 1169 (1963).

    Google Scholar 

  26. Malnic, G., R. M. Klose, and G. Giebisch: Micropuncture study of renal potassium excretion in the rat. Amer. J. Physiol. 206, 674 (1964).

    Google Scholar 

  27. Marsh, D. J., K. J. Ullrich, and G. Rumrich: Micropuncture analysis of the behavior of potassium ions in rat renal cortical tubules. Pflügers Arch. ges. Physiol. 227, 107 (1963).

    Google Scholar 

  28. McEvoy, J., G. Hollmann u. G. Senft: Einfluß von Mineralocorticoiden auf die tubuläre Rückgewinnung von Na-Ionen. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 250, 318 (1965).

    Google Scholar 

  29. Morel, F., et M. Guinnebault: Les mécanismes de concentration et de dilution de l'urine. J. Physiol. (Paris) 53, 75 (1961).

    Google Scholar 

  30. Nicholson, T. F.: A comparison of the effects of proximal and distal tubular damage on the action of desoxycorticosterone and aldosterone. Canad. J. Biochem. 53, 641 (1957).

    Google Scholar 

  31. Peters, G.: Der Einfluß von Nebennierenrindenhormonen auf die renale Wasserund Elektrolytausscheidung bei adrenalektomierten und normalen Ratten nach Gabe von Wasser oder isotoner NaCl-Lösung und im Durst. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 235, 155 (1959).

    Google Scholar 

  32. — Der Einfluß von Adrenalektomie und Nebennierenrindenhormonen auf die renalen Clearancen von Inulin, p-Aminohippurat, echtem endogenem Kreatinin und Harnstoff bei der Ratte. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 235, 312 (1959).

    Google Scholar 

  33. Peters, G.: Nebennierenrinden-Inkretion und Wasser-Elektrolythaushalt. Leipzig: G. Thieme 1960.

    Google Scholar 

  34. Porter, G. A., R. Bogoroch, and I. S. Edelman: Studies on the mechanism of action of aldosterone. J. clin. Invest. 43, 1246 (1964).

    Google Scholar 

  35. —, and I. S. Edelman: The action of aldosterone and related corticosteroids on sodium transport across the toad bladder. J. clin. Invest. 43, 611 (1964).

    Google Scholar 

  36. Sharp, G. W., and A. Leaf: Studies on the biological action of aldosterone in vitro. J. clin. Invest. 42, 978 (1963).

    Google Scholar 

  37. — Biological action of aldosterone in vitro. Nature (Lond.) 202, 1185 (1964).

    Google Scholar 

  38. Shipp, J. C., I. B. Hanenson, E. E. Windhager, H. J. Schatzmann, G. Whittembury, H. Yoshimura, and A. K. Solomon: Single proximal tubules of the Necturus kidney. Methods for micropuncture and microperfusion. Amer. J. Physiol. 195, 563 (1958).

    Google Scholar 

  39. Sonnenblick, E. H., P. J. Cannon, and J. H. Laragh: The nature of the action of intravenous aldosterone: evidence for a role of the hormone in urinary dilution. J. clin. Invest. 40, 903 (1961).

    Google Scholar 

  40. Ullrich, K. J., B. Schmidt-Nielsen, R. O'Dell, G. Pehling, C. W. Gottschalk, W. E. Lassiter, and M. Mylle: Micropuncture study of proximal and distal tubular fluid in rat kidney. Amer. J. Physiol. 204, 527 (1963).

    Google Scholar 

  41. Vander, A. J., R. L. Malvin, W. S. Wilde, J. Lapides, L. P. Sullivan, and V. M. McMurry: Effects of adrenalectomy and aldosterone on proximal and distal tubular sodium reabsorption. Proc. Soc. exp. Biol. (N. Y.) 99, 323 (1958).

    Google Scholar 

  42. —, and R. L. Malvin: Stop flow analysis of aldosterone and steroidal antagonist SC 8109 on renal tubular sodium transport kinetics. Proc. Soc. exp. Biol. (N. Y.) 103, 525 (1960).

    Google Scholar 

  43. Walker, A. M., P. A. Bott, J. Oliver, and M. C. MacDowell: The collection and analysis of fluid from single nephrons of the mammalian kidney. Amer. J. Physiol. 134, 580 (1941).

    Google Scholar 

  44. Wiederholt, M., K. Hierholzer, G. Rumrich u. H. Holzgreve: Transtubuläre Natriumströme im proximalen und distalen Tubulus adrenalektomierter Ratten. Pflügers Arch. ges. Physiol. 281, R 95 (1964).

  45. Williamson, H., T. Skulan, and F. E. Shideman: Effects of adrenalectomy and desoxycorticosterone on stop-flow patterns of sodium and potassium in the rat. J. Pharmacol. exp. Ther. 131, 49 (1961).

    Google Scholar 

  46. Windhager, E. E.: Electrophysiological study of renal papilla of golden hamsters. Amer. J. Physiol. 206, 694 (1964).

    Google Scholar 

  47. —, and G. Giebisch: Micropuncture study of renal tubular transfer of sodium chloride in the rat. Amer. J. Physiol. 200, 581 (1961).

    Google Scholar 

  48. Yunis, S. L., D. D. Bercovitch, R. M. Stein, M. F. Levitt, and M. H. Goldstein: Renal tubular effects of hydrocortisone and aldosterone in normal hydropenic man: comments on sites of action. J. clin. Invest. 43, 1668 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 5 Figures in the Text

This work was supported by grants from the National Institutes of Health, the National Science Foundation, the American Heart Association, the Life Insurance Medical Fund and the Deutsche Forschungsgemeinschaft.

Part of this material was presented in abstract form [Pflügers Arch. ges. Physiol. 279, R 26 (1964)].

Supported by Deutsche Forschungsgemeinschaft.

Supported by Public Health Service Research Career Program Award (5-k6-AM-18).

New York Health Research Council Career Scientist.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hierholzer, K., Wiederholt, M., Holzgreve, H. et al. Micropuncture study of renal transtubular concentration gradients of sodium and potassium in adrenalectomized rats. Pflügers Archiv 285, 193–210 (1965). https://doi.org/10.1007/BF00362623

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00362623

Keywords

Navigation