Skip to main content
Log in

Genetic differentiation between spatially-disjunct populations of the deep-sea, hydrothermal vent-endemic amphipod Ventiella sulfuris

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Species endemic to deep-sea hydrothermal vent ecosystems have disjunct distributions imposed by the island-like arrangement of their specialized habitats. Using allozyme electrophoresis, we examined genetic population structure of the hydrothermal vent amphipod Ventiella sulfuris Barnard and Ingram, 1990. Samples from five sites along the East Pacific Rise (EPR) and two along the Galapagos Rift were collected in 1990 and 1988, respectively. Variability, based on 12 enzyme loci, was relatively high \(\bar P\) (proportion of polymorphic loci whose most common allele not greater than 0.95 in frequency) =41.6%; \(\bar H\) (mean heterozygosity) =0.158] compared with shallow-water marine and freshwater amphipods, and similar to the deep-sea lysianassid Eurythenes gryllus. Genetic divergence among populations spread along a cöntiguous rift axis (i.e., EPR) was low [Nei's genetic distance (D) ranged from <0.001 to 0.018]. Genetic tructure analysis suggests that along a contiguous ridge axis migration occurs in a stepping stone manner and is unconstrained by distances as great as 1200 km (migration rate, \(\bar M\), ranged from 1.9 to 67.8 ind. generation−1). However, genetic divergence between populations on disjunct ridge axes was extremely high (D ranged from 0.438 to 0.476). Most of the variance in gene frequencies was due to the differences between the major subpopulations inhabiting the two distinct ridge axes, EPR and Galapagos Rift. Apparently, very little migration and gene flow occur between these major subpopulations (M≪1). This level of genetic divergence may be sufficient to justity separation of EPR and Galapagos Rift populations at the species level. Futher analyses of morphological characters is required before taxonomic status can be assigned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Ayala, F. J., Tracey, M. L., Barr, L. G., McDonald, J. F., Perez-Salas, S. (1974). Genetic variation in natural populations of five Drosophila species and the hypothesis of the selective neutrality of protein polymorphisms. Genetics 77: 343–384

    Google Scholar 

  • Ayala, F. J., Valentine, J. W. (1974). Genetic variability in the cosmopolitan deep-water ophiuran Ophiomusium lymani. Mar. Biol. 27: 51–57

    Google Scholar 

  • Baldwin, R. J., Smith, K. L., Jr. (1987). Temporal variation in the catch rate, length, color and sex of the necrophagus amphipod, Eurythenes gryllus, from the central and eastern north Pacific. Deep-Sea Res. 34: 425–439

    Google Scholar 

  • Barnard, J. L. (1961). Gammaridean Amphipoda from depths of 400 to 6000 meters. Galathea Rep. 5: 23–128

    Google Scholar 

  • Barnard, J. L., Ingram, C. (1990). Lysianassoid Amphipoda (Crustacea) from deep-sea thermal vents. Smithson. Contr. Zool. 499: 1–80

    Google Scholar 

  • Bisol, P. M., Costa, R., Sibuet, M. (1984). Ecological and genetical survey on two deep-sea holothurians: Benthogone rosea and Benthodytes typica. Mar. Ecol. Prog. Ser. 15: 275–281

    Google Scholar 

  • Blot, M., Soyer, J., Thiriot-Quievreux, C. (1987). Preliminary data on the genetic differentiation of Mytilus desolationis Lamy 1936 and Aulacomya ater regia Powell 1957 (Bivalvia, Mytilidae) in the Kerguelen Islands (Terres Australes et Antarctiques Françaises). Polar Biol. 7: 1–9

    Google Scholar 

  • Bucklin, A. (1988). Allozymic variability of Riftia pachyptila populations from the Galapagos Rift and 21°N hydrothermal vents. Deep-Sea Res. 35: 1759–1768

    Google Scholar 

  • Bucklin, A., Wilson, R. R., Jr., Smith, K. L., Jr. (1987). Genetic differentiation of seamount and basin populations of the deepsea amphipod Eurythenes gryllus. Deep-Sea Res. 34: 1795–1810

    Google Scholar 

  • Bulnheim, H. P., Scholl, A. (1986). Genetic differentiation between populations of Talitrus saltator and Talorchestia deshayesii (Crustacea: Amphipoda) from coastal areas of the north-western European continent. Mar. Biol. 92: 525–536

    Google Scholar 

  • Cary, S. C., Felbeck, H., Holland, N. D. (1989). Observations on the reproductive biology of the hydrothermal vent tube worm Riftia pachyptila. Mar. Ecol. Prog. Ser. 52: 89–94

    Google Scholar 

  • Cavalli-Sforza, L. L., Edwards, A. W. F. (1967). Phylogenetic analysis: models and estimation procedures. Evolution, Lawrence, Kansas 21: 550–570

    Google Scholar 

  • Childress, J. J. (1988). Hydrothermal vents: a case study of the biology and chemistry of a deep-sea hydrothermal vent of the Galapagos Rift. Deep-Sea Res. 35: 1677–1849

    Google Scholar 

  • Costa, R., Bisol, P. M. (1978). Genetic variability in deep-sea organisms. Biol. Bull. mar. biol. Lab., Woods Hole 155: 125–133

    Google Scholar 

  • Farris, J. F. (1981). Distance data in phylogenetic analysis. In: Funk, V. A., Brooks, D. R. (eds.) Advances in cladistics: proceedings of the first meeting of the Willi Hennig Society. New York Botanical Garden, New York, p. 1–23

    Google Scholar 

  • Fornari, D. J., Gallo, D. G., Edwards, M. H., Madsen, J. A., Perfit, M. R., Shor, A. N. (1989). Structure and topography of the Siqueros transform fault system: evidence for the development of intra-transform spreading centers. Mar. geophys. Res. 11: 263–299

    Google Scholar 

  • Gooch, J. L., Schopf, T. J. M. (1972). Genetic variability in the deep sea: relation to environmental variability. Evolution, Lawrence, Kansas 26: 545–552

    Google Scholar 

  • Grassle, J. P. (1985). Genetic differentiation in populations of hydrothermal vent mussels (Bathymodiolus thermophilus) from the Galapagos Rift and 13°N on the East Pacific Rise. In: Jones, M. L. (ed.) Hydrothermal vents of the Eastern Pacific: an overview, Vol. 6. Bull. Biol. Soc. Wash, Washington D. C., p. 429–442

  • Grassle, J. F. (1986). The ecology of deep-sea hydrothermal vent communities. Adv. mar. Biol. 23: 301–362

    Google Scholar 

  • Gustafson, R. G., Littlewood, D. T. J., Lutz, R. A. (1991). Gastropod egg capsules and their contents from deep-sea hydrothermal vent environments. Biol. Bull. mar. biol. Lab., Woods Hole 180: 34–55

    Google Scholar 

  • Hessler, R. R., Lonsdale, P. F. (1991). Biogeography of Mariana Trough hydrothermal vent communities. Deep-Sea Res. 38: 185–199

    Google Scholar 

  • Hessler, R. R., Smithey, W. M., Boudrias, M. A., Keller, C. H., Lutz, R. A., Childress, J. J. (1988). Temporal change in megafauna at the Rose Garden hydrothermal vent (Galapagos Rift; eastern tropical Pacific). Deep-Sea Res. 35: 1681–1709

    Google Scholar 

  • Jones, M. L. (ed.) (1985). Hydrothermal vents of the Eastern Pacific: an overview, Vol. 6. Bull. Biol. Soc. Wash., Washington D. C., p. 1–566

  • Kimura, M., Weiss, W. H. (1964). The stepping stone model of genetic structure and the decrease of genetic correlation with distance. Genetics 49: 561–576

    Google Scholar 

  • Kwast, K. E., Foltz, D. W., Stickle, W. B. (1990). Population genetics and systematics of the Leptasterias hexactis (Echinodermata: Asteroidea) species complex. Mar. Biol. 105: 477–489

    Google Scholar 

  • Levene, H. (1949). On a matching problem arising in genetics. Ann. Math. Statist. 20: 91–94

    Google Scholar 

  • Lonsdale, P. (1976). Abyssal circulation of the southwestern Pacific and some geological implications. J. geophys. Res. 81: 1163–1176

    Google Scholar 

  • Lonsdale, P. (1988). Structural pattern of the Galapagos Microplate and evolution of the Galapagos Triple Junction. J. Geophys. Res. 93: 13551–13574

    Google Scholar 

  • Lutz, R. A. (1988). Dispersal of organisms at deep-sea hydrothermal vents: a review. Oceanol. Acta (Spec. Vol.) 8: 23–29

    Google Scholar 

  • Lutz, R. A., Jablonski, D., Rhoads, D. C., Turner, R. D. (1980). Larval dispersal of a deep-sea hydrothermal vent bivalve from the Galapagos Rift. Mar. Biol. 57: 127–133

    Google Scholar 

  • Lutz, R. A., Jablonski, D., Turner, R. D. (1984). Larval development and dispersal at deep-sea hydrothermal vents. Science, N.Y. 226: 1451–1454

    Google Scholar 

  • Mallet, A. L., Zouros, E., Gartner-Kepkay, K. E., Freeman, K. R., Dickie, L. M. (1985). Larval viability and heterozygote deficiency in populations of marine bivalves: evidence from pair matings of mussels. Mar. Biol. 87: 165–172

    Google Scholar 

  • Murphy, L. S., Rowe, G. T., Haedrich, R. L. (1976). Genetic variability in deep-sea echinoderms. Deep-Sea Res. 23: 339–348

    Google Scholar 

  • Murphy, R. W., Sites, J. W., Jr., Buth, D. G., Haufler, C. H. (1990). Proteins I: isozyme electrophoresis. In: Hillis, D. M., Moritz, C. (eds.) Molecular systematics. Sinauer Associates, Inc., Sunderland, Massachusetts, p. 45–126

    Google Scholar 

  • Nei, M. (1972). Genetic distance between populations. Am. Nat. 106: 283–292

    Google Scholar 

  • Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proc. Natn. Acad. Sci. U.S.A. 70: 3321–3323

    Google Scholar 

  • Nei, M. (1977). F-statistics and analysis of gene diversity in subdivided populations. Ann. Hum. Genet. 41: 225–233

    Google Scholar 

  • Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–590

    Google Scholar 

  • Nei, M. (1987). Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Patarnello, T., Bisol, P. M., Varotto, V., Fuser, V., Battaglia, B. (1990). A study of enzyme polymorphism in the antarctic amphipod Paramoera walkeri Stebbing. Polar Biol. 10: 495–498

    Google Scholar 

  • Porter, A. H. (1990). Testing nominal species boundaries using gene flow statistics: the taxonomy of two hybridizing adminal butterflies (Limenitis: Nymphalidae). Syst. Zool. 39: 131–147

    Google Scholar 

  • Rice, W. R. (1989). Analyzing tables of statistical tests. Evolution, Lawrence, Kansas 43: 223–225

    Google Scholar 

  • Scheepmaker, M. (1990). Genetic differentiation and estimated levels of gene flow in members of the Gammarus pulex-group (Crustacea, Amphipoda) in western Europe. Bijdr. Dierk. 60: 3–30

    Google Scholar 

  • Siebenaller, J. F. (1978). Genetic variation in deep-sea invertebrate populations: the bathyal gastropod Bathybembix bairdii. Mar. Biol. 47: 265–275

    Google Scholar 

  • Siegismund, H. R., Simonsen, V., Kolding, S. (1985). Genetic studies of Gammarus. I. Genetic differentiation of local populations. Hereditas 102: 1–13

    Google Scholar 

  • Slatkin, M., Barton, N. H. (1989). A comparison of three indirect methods for estimating average levels of gene flow. Evolution Lawrence, Kansas 43: 1349–1368

    Google Scholar 

  • Slatkin, M., Maddison, W. P. (1990). Detecting isolation by distance using phylogenies of genes. Genetics 126: 249–260

    Google Scholar 

  • Slatkin, M., Voelm, L. (1991). F ST in a hierarchical island model. Genetics 127: 627–629

    Google Scholar 

  • Swofford, D. L. (1981). On the utility of the distance Wagner procedure. In: Funk, V. A., Brooks, D. R. (eds.) Advances in cladistics: proceedings of the first meeting of the Willi Hennig Society. New York Botanical Garden, New York, p. 25–43

    Google Scholar 

  • Swofford, D. L., Selander, R. B. (1989). BIOSYS-1: a computer program for the analysis of allelic variation in population genetics and biochemical systematics, release 1.7. David L. Swofford, Illinois Natural History Survey, Champaign, Illinois

    Google Scholar 

  • Thurston, M. H. (1990). Abyssal necrophagus amphipods (Crustacea: Amphipoda) in the northeast and tropical Atlantic Ocean. Prog. Oceanogr. 24: 257–274

    Google Scholar 

  • Tracey, M. L., Nelson, K., Hedgecock, D., Shleser, R. A., Pressick, M. L. (1975). Biochemical genetics of lobsters: genetic variation and the structure of American lobster (Homarus americanus) populations. J. Fish. Res. Bd Can. 32: 2091–2101

    Google Scholar 

  • Tunnicliffe, V. (1988). Biogeography and evolution of hydrothermal-vent fauna in the eastern Pacific Ocean. Proc. R. Soc. Lond. B 233: 347–366

    Google Scholar 

  • Van Dover, C. L. (1990). Biogeography of hydrothermal vent communities along seafloor spreading centers. Trends Ecol. & Evol. 5: 242–246

    Google Scholar 

  • Van Dover, C. L., Hessler, R. R. (1990). Spatial variation in faunal composition of hydrothermal vent communities on the East Pacific Rise and Galapagos Spreading Center. In: McMurray, G. R. (ed.) Gorda Ridge: a seafloor spreading center in the United States Economic Zone. Springer-Verlag, New York, p. 253–264

    Google Scholar 

  • Weir, B. S., Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure. Evolution, Lawrence, Kansas 38: 1358–1370

    Google Scholar 

  • Wolf, P. G., Soltis, P. S. (1992). Estimates of gene flow among populations, geographic races, and species in the Ipomopsis aggregata complex. Genetics 130: 639–647

    Google Scholar 

  • Wright, S. (1951). The genetical structure of populations. Ann Eugen. 15: 323–354

    Google Scholar 

  • Wright, S. (1965). The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution, Lawrence, Kansas 19: 395–420

    Google Scholar 

  • Wright, S. (1978). Evolution and genetics of populations. University of Chicago Press, Chicago

    Google Scholar 

  • Zouros, E., Foltz, D. W. (1984). Possible explanations of heterozygote deficiency in bivalve molluscs. Malacologia 25: 583–591

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Grassle, New Brunswick

Rights and permissions

Reprints and permissions

About this article

Cite this article

France, S.C., Hessler, R.R. & Vrijenhoek, R.C. Genetic differentiation between spatially-disjunct populations of the deep-sea, hydrothermal vent-endemic amphipod Ventiella sulfuris . Marine Biology 114, 551–559 (1992). https://doi.org/10.1007/BF00357252

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00357252

Keywords

Navigation