Skip to main content
Log in

A Volterra representation for some neuron models

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

A Volterra-like polynomial representation is derived and its convergence discussed for two neuronal models in which subthreshold inputs are integrated either without loss (integrate and fire) or with a decay which follows an exponential time course (leaky integrator). This polynomial representation provides a kind of “nonlinear transfer function” for the nonlinear encoding process. Standard formulae are used to derive explicitely the output for various inputs as in linear system theory. Moreover, the nonlinear transfer function associated with cascades or networks of neurons can be also obtained. Finally, extensions and implications of these results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ascoli,C., Barbi,M., Frediani,C., Ghelardini,G., Petracchi,D.: Rectification and spike synchronization in the Limulus lateral eye. Kybernetik 14, 153 (1974)

    Google Scholar 

  • Barlow,R.B., Lange,G.D.: A nonlinearity in the inhibitory interactions in the lateral eye of Limulus. J. gen. Physiol. 63, 579 (1974)

    Google Scholar 

  • Bedrosian,E., Rice,S.O.: The output properties of Volterra systems driven by harmonic and gaussian inputs. Proc. IEEE 59, 1688 (1971)

    Google Scholar 

  • Borsellino,A., Poppele,R.E., Terzuolo,C.A.: Transfer functions of the slowly adapting stretch receptor organ of Crustacea. Cold Spring Harbour Symp. Quant. Biol. 30, 581 (1965)

    Google Scholar 

  • Brilliant,M.B.: Theory of the analysis of nonlinear systems. Res. Lab. El. M.I.T. Rep. 345 (1958)

  • Büttner,C., Büttner,U., Grüsser,O.J.: Interaction of excitation and direct inhibition in the receptive field center of retinal neurons. Pflügers Arch. 322, 1 (1971)

    Google Scholar 

  • Capocelli,R.M., Ricciardi,L.M.: Diffusion approximation and first passage time problem for a model neuron. Kybernetik 8, 241 (1971)

    Google Scholar 

  • Chaplain,R.A.: Small-signal analysis of the encoder mechanism in the lobster stretch receptor and the frog and cat muscle spindle. Biol. Cybernetics 17, 1 (1975)

    Google Scholar 

  • Coenen,R., Chaplain,R.A.: Systems analysis of biological receptors. The transfer characteristics of the frog muscle spindle. Kybernetik 13, 183 (1974)

    Google Scholar 

  • Comtet,L.: Advanced combinatories Dortrecht: Reidel, D. 1974

    Google Scholar 

  • Copson,E.T.: An introduction to the theory of functions of a complex variable. Oxford: Clarendon Press 1935

    Google Scholar 

  • Crum,L.A., Heinen,J.A.: Simultaneous reduction and expansion of multidimensional Laplace transform kernels. SIAM J. appl. Math. 26, 4 (1974)

    Google Scholar 

  • DeSantis,R.M., Porter,W.A.: On the analysis of feedback systems with a polynomic plant. Int. J. Control 21, 159 (1975)

    Google Scholar 

  • Frankenhauser,B., Hodgkin,A.: The action of calcium on the Electrical properties of squid axons. J. Physiol. 137, 218–244 (1957)

    Google Scholar 

  • Gernstein,G.L., Mandelbrot,B.: Random walk models for the spike activity of a single neuron. Biophys. J. 4, 41 (1964)

    Google Scholar 

  • Goursat,E.: Course d'Analyse, Paris: Gauthier-Villars 1918

    Google Scholar 

  • van de Grind,W.A., Grüsser,O.J., Lunkenheimer,H.U.: Temporal transfer properties of the afferent visual system. Handbook of Sensory Physiol. VII/3A, pp. 431. Berlin-Heidelberg-New York: Springer 1973

    Google Scholar 

  • Halme,A., Orava,J., Blomberg,H.: Polynomial operators in nonlinear systems theory. Int. J. Systems. Sci. 2 25 (1971)

    Google Scholar 

  • Hochstein,S., Shapley,R.M.: Linear and nonlinear spatial subunits in Y cat retinal ganglion cells. J. Physiol. 262, 265–284 (1976)

    Google Scholar 

  • Hodgkin,A.L., Huxley,A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500 (1952)

    Google Scholar 

  • Holden,A.V.: The response of excitable membrane models to a cyclic input. Biol. Cybernetics 21, 1 (1976)

    Google Scholar 

  • Kirkwood,R.A.: The irequency response of a frog muscle spindle under various condition. J. Physiol. 222, 135 (1972)

    Google Scholar 

  • Knight,B.W.: Dynamics of encoding in a population of neurons. J. gen. Physiol. 59, 734 (1972a)

    Google Scholar 

  • Knight,B.W.: The relationship between the firing rate of a single neuron and the level of activity in a population of neurons. J. gen. Physiol. 59, 767 (1972b)

    Google Scholar 

  • Knight,B.W.: Some questions concerning the encoding dynamics of neuron populations. In: Symposial Papers of the International Biophysics Congress, Moscow (1973)

  • Knight,B.W.: The horseshoe crab eye: a little nervous system that is solvable. In: Lectures on Mathematics in the Life Sciences. 5. Some Mathematical Questions in Biology. J.D. Cowan, ed. Am. Math. Soc. Providence, R.I. (1976)

    Google Scholar 

  • Johannesma,P.I.M.: Diffusion models for the stochastic activity of neurons. In: Neural Networks, Caianiello,E.R., ed. Berlin-Heidelberg-New York: Springer 1969

    Google Scholar 

  • Lagrange,J.L.: Nouvelle methode pour résoudre les équations littérales par le moyen des series. Mem. Ac. Berlin XXIV, p. 25 (1770)

    Google Scholar 

  • McAllister,R.E., Noble,D.S., Tsien,R.W.: Reconstruction of the electrical activity of cardiac Purkinje fibres. J. Physiol. 251, 1–60 (1975)

    Google Scholar 

  • McCullogh,W.S., Pitts,W.H.: A logical calculus of ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115–133 (1943)

    Google Scholar 

  • Melvill Jones,G., Milsum,J.H.: Characteristics of neural transmission from the semicircular canal to the vestibular nuclei of cats. J. Physiol. 209, 295 (1970)

    Google Scholar 

  • Palm,G., Poggio,T.: The Volterra representation and the Wiener expansion: validity and pitfalls. SIAM J. appl. Math. 33, 2 (1977)

    Google Scholar 

  • Poggio,T.: Stochastic linearization, central limit theorem and linearity in (nervous) black boxes.I: Atti del II Congresso Nazionale di Cibernetica e Biofisica, S. Marino 3–5 Ottobre 1974, Pisa, 349 (1975)

  • Poggio,T., Reichardt,W.: Considerations on models of movement detection. Kybernetik 13, 223 (1973)

    Google Scholar 

  • Poggio,T., Reichardt,W.: Visual control of orientation behaviour in the fly. Part II. Quart. Rev. Biophys. 9, 3, 67 (1976)

    Google Scholar 

  • Poggio,T., Torre,V.: A nonlinear transfer function for some neuron models. In: Proc. of the I. Symp. on Testing and Identification of Nonlinear Systems. McCann,G.D., Marmarelis,P.Z., eds. Pasadena (1975)

  • Rescigno,A.R., Stein,R.B., Purple,R.L., Poppele,R.E.: A neuronal model for the discharge patterns produced by cyclic inputs. Bull. Math. Biophys. 32, 337 (1970)

    Google Scholar 

  • Poppele,R.E., Chen,W.J.: Repetitive firing behaviour of mammalian muscle spindle. J. Neurophysiol. 35, 357 (1972)

    Google Scholar 

  • Redman,S.J.: A quantitative approach to integrative function of dendrites. Int. Rev. Physiol., Neurophys. Vol. 10, Porter,R., ed. Baltimore: University Park Press 1976

    Google Scholar 

  • Schmitt,F.O., Parvati,Dev., Smith,B.H.: Processing of information by brain cells. Science 193, 114–120 (1976)

    Google Scholar 

  • Shapley,R.: Fluctuations of the impulse rate in Limulus eccentric cells. J. gen. Physiol. 57, 539 (1971)

    Google Scholar 

  • Spekreijse,H.: Rectification in the goldfish retina: analysis by sinusoidal and auxiliary stimulation. Vision. Res. 9, 1461 (1969)

    Google Scholar 

  • Stein,R.B.: The role of spike trains in transmitting and distorting sensory signals. In: The Neurosciences, Second Study Program, pp. 597. Schnitt,F.O., ed. New York: Rockefeller University Press 1970

    Google Scholar 

  • Stein,R.B., French,A.S., Holden,A.V.: The frequency response coherence and information capacity of two neuronal models. Biophys. J. 12, 295 (1972)

    Google Scholar 

  • Terzuolo,C.A., Knox,C.K.: Static and dynamic behaviour of the slowly adapting stretch receptor organ of Crustacea. In: Handbook of Sensory Physiology Vol. 1, pp. 500. Berlin-Heidelberg-New York: Springer 1971

    Google Scholar 

  • Victor,J.D., Shapley, R.M., Knight,B.W.: Nonlinear analysis of cat retinal ganglion cells in the frequency domain. Preprint (1977)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poggio, T., Torre, V. A Volterra representation for some neuron models. Biol. Cybern. 27, 113–124 (1977). https://doi.org/10.1007/BF00337263

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00337263

Keywords

Navigation