Skip to main content
Log in

Analysis of large deletions in the Mauriceville and Varkud mitochondrial plasmids of Neurospora

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

The Mauriceville and Varkud mitochondrial plasmids are closely related, closed-circular DNAs (3.6 and 3.7 kb, respectively) that have characteristics of mtDNA introns and retroid elements. Both plasmids contain a 710 amino acid open reading frame (ORF) that encodes an 81 kDa protein having reverse transcriptase activity. Here, we analyzed two mutant plasmids, V5-36 and M3-24, that have undergone relatively large deletions (approximately 0.35 and 0.5 kb, respectively). Both deletions occur downstream of the long ORF in a noncoding region of the plasmids that contains a direct repeat of 160 bp and a cluster of five PstI-palindromes, a repetitive sequence element in Neurospora mtDNA. In V5-36, the deletion end points are at the bases of two hairpin structures that are centered around PstI-palindromes and flank the deleted region. In M3-24, the deletion junction contains an extra T-residue that is not encoded in the plasmid. In both plasmids, the deletion end points do not correspond to homologous or directly repeated sequences of more than one nucleotide, whose pairing could account for the deletion junction. The characteristics of the deletion end points can be accounted for either by illegitimate recombination, possibly following double strand breaks at cruciform structures, or by interruption of reverse transcription followed by reinitiation downstream. The finding that the deletions encompass the 160 bp direct repeat and all five PstI-palindromes indicates that neither are required for propagation of the plasmids and supports the hypothesis that PstI-palindromes are selfish DNA elements that inserted into a nonessential region of the plasmid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahne A, Muller-Derlich J, Merlos-Lang AM, Kanabay F, Wolf K, Lang BF (1988) J Mol Biol 202:725–734

    Google Scholar 

  • Akins RA, Kelley RL, and Lambowitz AM (1986) Cell 47:505–516

    Google Scholar 

  • Akins RA, Grant DM, Stohl LL, Bottorff DA, Nargang FE, Lambowitz AM (1988) J Mol Biol 204:1–25

    Google Scholar 

  • Akins RA, Kelley RL, Lambowitz AM (1989) Mol Cell Biol 9:678–691

    Google Scholar 

  • Almasan A, Mishra NC (1988) Genetics 120:935–945

    Google Scholar 

  • Collins RA, Stohl LL, Cole MD, Lambowitz AM (1981) Cell 24:443–452

    Google Scholar 

  • Chen EY, Seeburg PH, (1985) DNA 4:165–170

    Google Scholar 

  • Davis RH, de Serres FJ (1970) Methods Enzymol 17A:79–143

    Google Scholar 

  • de Massy B, Weisberg RA, Studier FW (1987) J Mol Biol 193:359–376

    Google Scholar 

  • De Vries H, Alzner-De Weerd B, Breitenberger CA, Chang DD, DeJonge JC, RajBhandary UL (1986) EMBO J 5:779–785

    Google Scholar 

  • De Zamaroczy M, Faugeron-Fonty G, Bernardi G (1983) Gene 21:193–202

    Google Scholar 

  • Gross SR, Hsieh T-S, Levine PH (1984) Cell 38:233–239

    Google Scholar 

  • Jensch F, Kosak H, Seeman NC, Kemper B (1989) EMBO J 8:4325–4334

    Google Scholar 

  • Jeyaseelan R, Shanmugam G (1988) Biochem Biophys Res Commun 156:1054–1060

    Google Scholar 

  • Koll F, Begel O, Belcour L (1987) Molec Gen Genet 209:630–632

    Google Scholar 

  • Kuiper MTR, Lambowitz AM (1988) Cell 55:693–704

    Google Scholar 

  • Kuiper MTR, Sabourin JR and Lambowitz AM (1990) J Biol Chem 265:6936–6943

    Google Scholar 

  • Lambowitz AM (1989) Cell 56:323–326

    Google Scholar 

  • Lazzarini RA, Keene JD, Schubert M (1981) Cell 26:145–154

    Google Scholar 

  • Michel F, Lang BF (1985) Nature 316:641–643

    Google Scholar 

  • Nargang FE, Bell JB, Stohl LL, Lambowitz AM (1983) J Biol Chem 258:8223–8230

    Google Scholar 

  • Nargang FE, Bell JB, Stohl LL, Lambowitz AM (1984) Cell 38:441–453

    Google Scholar 

  • Norrander J, Kempe T, Messing J (1983) Gene 26:101–106

    Google Scholar 

  • Perrault J (1981) Curr Top Microbiol Immunol 93:151–207

    Google Scholar 

  • Roth DB, Porter TM, Wilson JH (1985) Molec Cell Biol 5:2599–2607

    Google Scholar 

  • Roth DB, Chang XB, Wilson JH (1989) Molec Cell Biol 9:3049–3057

    Google Scholar 

  • Sanger FS, Nicklen S, Coulson AR (1977) Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Sanger FS, Coulson AR, Hong GF, Hill DF, Peterson GB (1982) J Mol Biol 162:729–774

    Google Scholar 

  • Saville BJ, Collins RA (1990) Cell 61:685–696

    Google Scholar 

  • Schon EA, Rizzuto R, Moraes CT, Nakase H, Zeviani M, DiMauro S (1989) Science 244:346–349

    Google Scholar 

  • Symington LS, Kolodner R (1985) Proc Natl Acad Sci USA 82:7247–7251

    Google Scholar 

  • Thode S, Schafer A, Pfeiffer P, Vielmetter W (1990) Cell 60:921–928

    Google Scholar 

  • West SC, Korner A (1985) Proc Natl Acad Sci USA 82:6445–6449

    Google Scholar 

  • West SC, Parsons CA, Picksley SM (1987) J Biol Chem 262:12752–12758

    Google Scholar 

  • Yin S, Heckman J, RajBhandary UL (1981) Cell 26:325–332

    Google Scholar 

  • Zinn AR, Pohlman JK, Perlman PS, Butow RA (1988) Proc Natl Acad Sci USA 85:2686–2690

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akins, R.A., Lambowitz, A.M. Analysis of large deletions in the Mauriceville and Varkud mitochondrial plasmids of Neurospora . Curr Genet 18, 365–369 (1990). https://doi.org/10.1007/BF00318218

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00318218

Key words

Navigation