Skip to main content
Log in

The comparative morphology and evolution of the eyes of caecilians (Amphibia, Gymnophiona)

  • Published:
Zoomorphology Aims and scope Submit manuscript

Summary

Caecilians (Amphibia, Gymnophiona) have been reported to have ‘vestigial’ eyes, to lack some or all of the extrinsic eye muscles and their nerves, and to utilize eye muscles and glands, or derivatives of them, to effect movement of the tentacle, a chemosensory structure unique among vertebrates. Morphological evidence indicates that the eye is a functional photoreceptor in virtually all species examined, with an intact retina and optic nerve. The pattern of retention of extrinsic muscles varies. The ontogeny of the eye of Dermophis mexicanus is typical of that of most vertebrates, though components of accommodation never develop. Several taxa are reported in the literature to lack various eye structures; the present study reveals them to be variously present. Evolutionary trends in caecilian eye morphology include the following: (1) the eye is overlain by thicker, often glandular skin, to overlain by bone as well as skin; (2) extrinsic muscles become attenuate, and some to all may be lost; (3) the retina has the typical vertebrate layered organization, to having a reduced cell number, to becoming net-like rather than stratal; (4) the optic nerve is present, becoming attenuate, perhaps represented only by glial cells; (5) the lens is round (aquatic forms, larval and adult) to spheroid; lens crystalline to cellular (retention of the embryonic condition) to amorphous to absent; (6) the vitreous body is reduced or lost; (7) the cornea adheres to the overlying dermis or periosteum; the lens is free to adherent to cornea to adherent to both cornea and retina. Scolecomorphids have the eye pulled out of the socket and embedded in the tentacle under the skin of the upper jaw. This pattern of trends in eye reduction is similar to that observed in other vertebrate lineages that are fossorial or troglobitic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alt A (1910) On the histology of the eye of Typhlotriton spelaeus, from Marble Cave, Mo. Trans Acad Sci St. Louis 19:83–96

    Google Scholar 

  • Arnold W (1935) Das Auge von Hypogeophis. Beitrag zur Kenntnis der Gymnophionen XXVII. Morphol Jahrb 76:589–625

    Google Scholar 

  • Brand DJ (1956) On the cranial morphology of Scolecomorphus uluguruensis (Barbour & Loweridge). Ann Univ Stellenbosch 32A:1–25

    Google Scholar 

  • Brandon RA (1968) Structure of the eye of Haideotriton wallacei, a North American troglobitic salamander. J Morph 124:345–352

    Google Scholar 

  • Burckhardt R (1891) Untersuchungen am Hirn und Geruchsorgan von Triton und Ichthyophis. Zeit Wiss Zool 52:369–370

    Google Scholar 

  • de Jager E (1938) A comparison of the cranial nerves and blood-vessels of Dermophis mexicanus and Dermophis gregorii. Anat Anz 86:321–347

    Google Scholar 

  • de Jager E (1939a) Contributions to the cranial anatomy of the Gymnophiona. Further points regarding the cranial anatomy of the genus Dermophis. Anat Anz 88:193–223

    Google Scholar 

  • de Jager E (1939b) The cranial anatomy of Coecilia ochrocephala Cope (further contributions to the cranial morphology of the Gymnophiona). Anat Anz 88:433–469

    Google Scholar 

  • de Villiers CGS (1936) Some aspects of the amphibian suspensorium, with special reference to the palatoquadrate and quadrato-maxillary. Anat Anz 81:225

    Google Scholar 

  • de Villiers CGS (1938) A comparison of some cranial features of the East African Gymnophiones Boulengerula boulengeri Tornier and Scolecomorphus uluguruensis Boulenger. Anat Anz 86:1–26

    Google Scholar 

  • Dieringer N, Precht W (1982) Compensatory head and eye movements in the frog and their contribution to stabilization of gaze. Exp Brain Res 47:394–406

    Google Scholar 

  • Dieringer N, Precht W, Blight AR (1982) Resetting fast phases of head and eye and their linkage in the frog. Exp Brain Res 47:407–416

    Google Scholar 

  • Dubost G (1968) Les mammiferes souterrains. Rev Ecol Biol Sol 5:99–133, 136–197

    Google Scholar 

  • Duke-Elder S (1958) Systems of Ophthalmology. Vol 1. The Eye in Evolution. C.V. Mosby Co., St Louis

    Google Scholar 

  • Edgeworth FH (1935) The Cranial Muscles of Vertebrates. Cambridge University Press, Cambridge

    Google Scholar 

  • Els AJ (1963) Contributions to the cranial morphology of Schistometopum thomensis (Bocage). Ann Univ Stellenbosch 38A:39–64

    Google Scholar 

  • Engelhardt F (1924) Tentakelapparat und Auge von Ichthyophis. Jena Z Naturwiss 60:241–305

    Google Scholar 

  • Eigenmann CH (1909) Cave vertebrates of America. A study in degenerative evolution. Carnegie Inst Washington 104:1–241

    Google Scholar 

  • Gundy GC (1977) Photoreceptor degeneration in the eyes of an amphisbaenian in response to constant light or constant darkness. J Exp Zool 201(2):169–176

    Google Scholar 

  • Hanke V (1912) Die rudimentären Sehorgane einiger Amphibien und Reptilien. Arch f vergleich Ophthalmologie 6:323–342

    Google Scholar 

  • Hawes RS (1946) On the eyes and reactions to light of Proteus anguinus. Q Rev Micros Sci 86:1–53

    Google Scholar 

  • Hetherington TE, Wake MH (1979) The lateral line system in larval Ichthyophis (Amphibia: Gymnophiona). Zoomorph 93:209–225

    Google Scholar 

  • Humason G (1978) Animal Tissue Techniques. W.H. Freeman, San Francisco

    Google Scholar 

  • Kohl C (1892) Rudimentäre Wirbelthieraugen. T. Fischer's Verlag, Cassell

    Google Scholar 

  • Kuhlenbeck H (1922) Zur Morphologie des Gymnophionengehirns. Jena Z Naturwiss 58:453–484

    Google Scholar 

  • Leydig F (1968) Über die Schleichenlurche. Zeit Wiss Zool 18:283–286, 291–297

    Google Scholar 

  • Manteuffel G, Plasa L, Sommer TJ, Wess O (1977) Involuntary eye movements in salamanders. Naturwiss 64:533

    Google Scholar 

  • Marcus H (1910) Zur Entwicklungsgeschichte des Kopfes, II Teil. Beiträge zur Kenntnis der Gymnophionen IV. Festschr f R. Hertwig. 2:373–462

    Google Scholar 

  • Nelsen OE (1956) Comparative Embryology of the Vertebrates. The Blakiston Co, New York

    Google Scholar 

  • Norris HW (1917) The eyeball and associated structures in the blindworms. Iowa Acad Sci Proc 24:299–300

    Google Scholar 

  • Norris HW, Hughes SP (1918) The cranial and anterior spinal nerves of the caecilian amphibians. J Morphol 31:490–557

    Google Scholar 

  • Peter K (1898) Die Entwicklung und funktionelle Gestaltung des Schädels von Ichthyophis glutinosus. Morphol Jahrb 25:553–623

    Google Scholar 

  • Prince JH (1956) Comparative Anatomy of the Eye. Charles C. Thomas Publ, Springfield Ill

    Google Scholar 

  • Ramaswami LS (1941) Some aspects of the cranial morphology of Uraeotyphlus narayani Seshachar (Apoda). Rec Indian Mus Calcutta 43:143–207

    Google Scholar 

  • Ramaswami LS (1943) An account of the head morphology of Gegenophis carnosus (Beddome), Apoda. J Mysore Univ 3:205–220

    Google Scholar 

  • Ramaswami LS (1948) The chondrocranium of Gegenophis (Apoda Amphibia). Proc Zool Soc London 118:752–760

    Google Scholar 

  • Rettig G, Fritzsch B, Himstedt W (1981) Development of retinofugal neuropil areas in the brain of the alpine newt, Triturus alpestris. Anat Embryol 162:163–171

    Google Scholar 

  • Rodieck RW (1973) The Vertebrate Retina Principles of Structure and Function, W.H. Freeman Co., San Francisco

    Google Scholar 

  • Sarasin P, Sarasin F (1887-1890) Ergebnisse naturwissenschaftlicher Forschungen auf Ceylon. Zur Entwicklungsgeschichte und Anatomie der ceylonesischen Blindwühle, Ichthyophis glutinosus. C.W. Kreidel's Verlag, Wiesbaden

    Google Scholar 

  • Schlampp KW (1892) Das Auge des Grottenolmes (Proteus anguineus). Zeit Wiss Zool 53:537–557

    Google Scholar 

  • Stone LS (1964) The structure and visual function of the eye of larval and adult cave salamanders Typhlotriton spelaeus. J Exp Zool 156:201–218

    Google Scholar 

  • Storch V, Welsch U (1973) Zur Ultrastruktur von Pigmentepithel und Photoreceptoren der Seitenaugen von Ichthyophis kohtaoensis (Gymnophiona, Amphibia). Zool Jb Anat 90:160–173

    Google Scholar 

  • Taylor EH (1968) The Caecilians of the World. A Taxonomic Review. University of Kansas Press, Larence, KA. 848 pp

    Google Scholar 

  • Thomas K (1983) A nitrocellulose embedding technique for vertebrate morphologists. Herp Rev 14:80–81

    Google Scholar 

  • Underwood G (1970) The Eye. In: Gans C and TS Parsons (eds) Biology of the Reptilia, Vol 2. Academic Press, New York, pp 1–97

    Google Scholar 

  • Visser MHC (1963) The cranial morphology of Ichthyophis glutinosus (Linne) and Ichthyophis monochrous (Bleeker). Ann Univ Stellenbosch 38A:67–102

    Google Scholar 

  • Waldschmidt J (1887) Zur Anatomie des Nervensystems der Gymnophionen. Jena Z Naturwiss 20:468–470

    Google Scholar 

  • Walls G (1942) The Vertebrate Eye and its Adaptive Radiation. Cranbrook Institute of Science, Bull 19, Bloomfield Hills, MI

  • Wiedersheim R (1879) Die Anatomie der Gymnophiona. Gustav Fischer Verlag, Jena

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wake, M.H. The comparative morphology and evolution of the eyes of caecilians (Amphibia, Gymnophiona). Zoomorphology 105, 277–295 (1985). https://doi.org/10.1007/BF00312059

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00312059

Keywords

Navigation