Skip to main content
Log in

Enzymes involved in crotonate metabolism in Syntrophomonas wolfei

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Cell-free extracts of Syntrophomonas wolfei subsp. wolfei grown with crotonate in pure culture or in coculture with Methanospirillum hungatei contained crotonyl-coenzyme A (CoA): acetate CoA-transferase activity. This activity was not detected in cell-free extracts from the butyrate-grown coculture which suggests that the long lag times observed before S. wolfei grew with crotonate were initially due to the inability to activate crotonate. Cell-free extracts of S. wolfei grown in pure culture contained high specific activities of hydrogenase and very low levels of formate dehydrogenase. The low levels suggest a biosynthethic rather than a catabolic role for the latter enzyme when S. wolfei is grown in pure culture. CO dehydrogenase activity was not detected. S. wolfei can form butyrate using a CoA transferase activity, but not by a phosphotransbutyrylase or enoate reductase activity. A c-type cytochrome was detected in S. wolfei grown in pure culture or in coculture indicating the presence of an electron transport system. This is a characteristic which separates S. wolfei from other known crotonate-using bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amos DA, McInerney MJ (1990) Growth of Synthrophomonas wolfei on short chain unsaturated fatty acids. Arch Microbiol 154: 31–36

    Google Scholar 

  • Bader J, Günther H, Schleicher E, Simon H, Pohl S, Mannheim W (1980) Utilization of (E)-2-butenoate (crotonate) by Clostridium kluyveri and some other Clostridium species. Arch Microbiol 125: 159–165

    Google Scholar 

  • Blach WE, Wolfe RS (1976) New approach to cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl Environ Microbiol 32: 781–791

    Google Scholar 

  • Barker HA, Jeng J-M, Neff N, Robertson JM, Tam FK, Hosaka S (1978) Butyryl CoA: acetoacetate CoA-transferase from a lysine-fermenting Clostridium. J Biol Chem 253: 1219–1225

    Google Scholar 

  • Barker HA, Stadtman ER, Kornberg A (1955) Coenzyme A transphorase from Clostridium kluyveri. Methods Enzymol 1: 599–602

    Google Scholar 

  • Beaty PS, McInerney MJ (1989) Effects of organic acid anions on the growth and metabolism of Syntrophomonas wolfei in pure culture and in defined consortia. Appl Environ Microbiol 55: 977–983

    Google Scholar 

  • Beaty PS, McInerney MJ (1987) Growth of Syntrophomonas wolfei in pure culture on crotonate. Arch Microbiol 147: 389–393

    Google Scholar 

  • Beaty PS, Wofford NQ, McInerney MJ (1987) Separation of Syntrophomonas wolfei from Methanospirillum hungatei in syntrophic cocultures by using Percoll gradients. Appl Environ Microbiol 53: 1183–1185

    Google Scholar 

  • Boone DR, Bryant MP (1980) Propionate-degrading bacterium Syntrophobacter wolinii gen. nov., sp. nov., from methanogenic ecosystem. Appl Environ Microbiol 40: 626–632

    Google Scholar 

  • Boone DR, Johnson RL, Liu Y (1989) Diffusion of interspecies electron carriers H2 and formate in methanogenic ecosystems and its implication in the measurement of K m for H2 or formate uptake. Appl Environ Microbiol 55: 1735–1741

    Google Scholar 

  • Bryant MP, Wolin EA, Wolin MJ, Wolfe RS (1967) Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch Mikrobiol 59: 20–31

    Google Scholar 

  • Clark JE, Ragsdale SW, Ljungdahl LG, Wiegel J (1982) Levels of enzymes involved in the synthesis of acetate from CO2 in Clostridium thermoautotrophicum. J Bacteriol 151: 507–509

    Google Scholar 

  • Decker K, Jungermann K, Thauer RK (1970) Energy production in anaerobic organisms. Angew Chem Int Ed Engl 9: 138–158

    Google Scholar 

  • Falk JE (1964) Porphyrins and metalloporphyrins. Elsevier, Amsterdam, p 241

    Google Scholar 

  • Gustafson WG, Feinberg BA, McFarland JT (1986) Energetics of β-oxidation. Reduction potentials of general fatty acyl-CoA dehydrogenase, electron transfer flavoprotein, and fatty acyl-CoA substrates. J Biol Chem 261: 7733–7741

    Google Scholar 

  • Hartmanis MGN, Gatenbeck S (1984) Intermediary metabolism in Clostridium acetobutylicum: levels of enzymes involved in the formation of acetate and butyrate. Appl Environ Microbiol 47: 1277–1283

    Google Scholar 

  • Jones CW, Redfearn ER (1967) Electron transport in Azotobacter vinelandii. Biochim Biophys Acta 113: 467–481

    Google Scholar 

  • Krumholz LR, Bryant MP (1986) Eubacterium oxidoreducens sp. nov. requiring H2 or formate to degrade gallate, pyrogallol, phloroglucinol and guercetin. Arch Microbiol 144: 8–14

    Google Scholar 

  • Ljungdahl LG (1986) The autotrophic pathway of acetate synthesis in acetogenic bacteria. Ann Rey Microbiol 40: 415–450

    Google Scholar 

  • McInerney MJ, Bryant MP (1981) Basic principles of bioconversion in anaerobic digestion and methanogenesis. In: Sofer S, Zaborsky OR (eds) Biomass conversion processes for energy and fuels. Plenum, New York, pp 277–296

    Google Scholar 

  • McInerney MJ, Bryant MP, Hespell RB, Costerton JW (1981) Syntrophomonas wolfei gen. nov., sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium. Appl Environ Microbiol 41: 1029–1039

    Google Scholar 

  • McInerney MJ, Bryant MP, Pfenning N (1979) Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens. Arch Microbiol 122: 129–135

    Google Scholar 

  • Mountfort DO, Bryant MP (1982) Isolation and characterization of an anaerobic, syntrophic benzoate-degrading bacterium from sewage sludge. Arch Microbiol 133: 249–256

    Google Scholar 

  • Schulman M, Valentino D (1976) Kinetic and catalytic properties of coenzyme A transferase from Petostreptococcus elsdenii. J Bacteriol 128: 372–381

    Google Scholar 

  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150: 76–86

    Google Scholar 

  • Sperry JE, Wilkins TD (1976) Cytochrome spectrum of an obligate anaerobe, Eubacterium lentum. J Bacteriol 125: 905–909

    Google Scholar 

  • Sramek SJ, Frerman FE (1975) Purification and properties of E. coli coenzyme A-transferase. Arch Biochem Biophys 171: 14–26

    Google Scholar 

  • Stadtman ER (1953) The coenzyme A transferase system in Clostridium kluyveri. J Biol Chem 203: 501–512

    Google Scholar 

  • Stieb M, Schink B (1984) A new 3-hydroxybutyrate fermenting anaerobe, Ilyobacter polytropus, gen. nov., sp. nov., possessing various fermentation pathways. Arch Microbiol 140: 139–146

    Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 47: 100–180

    Google Scholar 

  • Thauer RK, Jungermann K, Henninger H, Wenning J, Decker K (1968) The energy metabolism of Clostridium kluyveri. Eur J Biochem 4: 173–180

    Google Scholar 

  • Thiele JH; Zeikus JG (1988) Control of interspecies electron flow during anaerobic digestion: role of floc formation in syntrophic methanogenesis. Appl Environ Microbiol 54: 20–29

    Google Scholar 

  • Tischer W, Bader J, Simon H (1979) Purification and some properties of a hitherto-unknown enzyme reducing the carbon-carbon double bond of α,β-unsaturated carboxylate anions. Eur J Biochem 97: 103–112

    Google Scholar 

  • Twarog R, Wolfe RS (1963) Role of butyryl phosphate in the energy metabolism of Clostridium tetanomorphum. J Bacteriol 86: 112–117

    Google Scholar 

  • Wofford NQ, Beaty PS, McInerney MJ (1986) Preparation of cell-free extracts and the enzymes involved in fatty acid metabolism in Syntrophomonas wolfei. J Bacteriol 167: 179–185

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McInerney, M.J., Wofford, N.Q. Enzymes involved in crotonate metabolism in Syntrophomonas wolfei . Arch. Microbiol. 158, 344–349 (1992). https://doi.org/10.1007/BF00245363

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00245363

Key words

Navigation