Skip to main content
Log in

Thermophysics of the planet Mercury

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Recent observations of the thermal emission of Mercury at microwave and infrared frequencies now permit a determination of the thermal and electrical properties of the subsurface of the planet. Radar and optical measurements show that the rotation period is 58.65 days, 2/3 of the orbital period. Several negative spectrographic searches verify that the effects of an atmosphere need not be taken into account in computing surface and subsurface temperatures. The observed thermal emission from the planet can then be interpreted from models similar to those developed for study of the Moon but adapted to the peculiar diurnal insolation of Mercury. The observations of Epstein et al. (1970) at 3.3 mm and of Klein (1970a) at 3.75 cm, when interpreted together with recent laboratory measurements of thermal properties of terrestrial and lunar rock powders, indicate that the ratio of electrical to thermal skin depth is 0.9 ± 0.3 times the wavelength in centimeters. Further results of this analysis of the subsurface are: Density = 1.5 ± 0.4 g cm-3; Electric loss tangent = 0.009 ± 0.004; Inverse thermal inertia = (15 ± 6) × 10−6 erg-1 cm2 s1/2 K; Equatorial midnight temperature = 100 ± 15K.

The microwave data generally conform to the predictions of the thermophysical models of Mercury developed by Morrison and Sagan (1967), including a suggestion that variations having mean periods of 50 days and 35 days are present in addition to the classical phase effect with period about 116 days. The time-averaged microwave temperature of the planet appears to increase ∼ 25 % from millimeter to decimeter wavelengths; this increase suggests that radiation plays an important role in the transport of heat in the subsurface. All of the conclusions of this review indicate that the thermophysical behavior of Mercury closely approximates that expected for the Moon, were it placed in the orbit of Mercury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, D. A. and Ney, E. P.: 1969, ‘Lunar Thermal Anomalies: Infrared Observations’, Science 164, 419.

    Google Scholar 

  • Belton, M. J. S., Hunten, D. M., and McElroy, M. B.: 1967, ‘A Search for an Atmosphere on Mercury’, Astrophys. J. 150, 1111.

    Google Scholar 

  • Bergstralh, J. T., Gray, L. D., and Smith, H. J.: 1967, ‘An Upper Limit for Atmospheric Carbon Dioxide on Mercury’, Astrophys. J. 149, L137.

    Google Scholar 

  • Binder, A. B. and Cruikshank, D. P.: 1967, ‘Mercury: New Observations of the Infrared Bands of Carbon Dioxide’, Science 155, 1135.

    Google Scholar 

  • Buhl, D.: 1970, ‘The Importance of Large Rocks in the Apparent Cooling of Lunar Craters (abstract)’, Bull. Amer. Astron. Soc. 2, 234.

    Google Scholar 

  • Camichel, H. and Dollfus, A.: 1968, ‘La rotation et la cartographie de la planète Mercure’, Icarus 8, 216.

    Google Scholar 

  • Campbell, M. J. and Ulrichs, J.: 1969, ‘Electrical Properties of Rocks and Their Significance for Lunar Radar Observations’, J. Geophys. Res. 74, 5867.

    Google Scholar 

  • Chapman, C. R.: 1967, ‘Optical Evidence on the Rotation of Mercury’, Earth Planetary Sci. Letters 3, 381.

    Google Scholar 

  • Colombo, G.: 1965, ‘Rotational Period of the Planet Mercury’, Nature 208, 575.

    Google Scholar 

  • Colombo, G. and Shapiro, I.I.: 1966, ‘The Rotation of the Planet Mercury’, Astrophys. J. 145, 296.

    Google Scholar 

  • Cruikshank, D. P. and Chapman, C. R.: 1967, ‘Mercury's Rotation and Visual Observations’, Sky and Telescope 34, 24.

    Google Scholar 

  • Dollfus, A.: 1957, ‘Etude des planètes par la polarisation de leur lumière’, Ann. Astrophys. Suppl. 4.

  • Dollfus, A.: 1961, ‘Polarization Studies of Planets’ in Planets and Satellites (ed. by G. P. Kuiper and B. N. Middlehurst), University of Chicago, Chicago, p. 343.

    Google Scholar 

  • Dyce, R. B., Pettengill, G. H., and Shapiro, I. I.: 1967, ‘Radar Determination of the Rotations of Venus and Mercury’, Astron. J. 72, 351.

    Google Scholar 

  • Eckman, P. K. and Cole, C. W.: 1969, ‘Mariner Venus/Mercury Study’, JPL Technical Memorandum 33-434.

  • Epstein, E. E.: 1966, ‘Mercury: Anomalous Absence from the 3.4 mm Radio Emission of Variation with Phase’, Science 151, 445.

    Google Scholar 

  • Epstein, E. E., Dworetsky, M. M., Fogarty, W. G., Montgomery, J. W., and Cooley, R. C.: 1970, ‘Mercury: Epilith Physical Parameters and Hermocentric Longitude Dependence of its 3.3-mm Radiation’, Radio Science 5, 401.

    Google Scholar 

  • Epstein, E. E., Soter, S. L., Oliver, J. P., Schorn, R. A., and Wilson, W. J.: 1967, ‘Mercury: Observations of the 3.4-mm Radio Emission’, Science 157, 1550.

    Google Scholar 

  • Gary, B.: 1967, ‘Mercury's Microwave Phase Effect’, Astrophys. J. 148, L141.

    Google Scholar 

  • Gierasch, P. and Goody, R.: 1968, ‘A Study of the Thermal and Dynamical Structure of the Martian Lower Atmosphere’, Planetary Space Sci. 16, 615.

    Google Scholar 

  • Gold, T., Campbell, M. J., and O'Leary, B. T.: 1970, ‘Optical and High-Frequency Properties of the Lunar Sample’, Science 167, 707.

    Google Scholar 

  • Goldreich, P. and Peale, S. J.: 1968, ‘The Dynamics of Planetary Rotations’, Ann. Rev. Astron. Astrophys. 6, 287.

    Google Scholar 

  • Golovkov, V. K. and Losovskii, B. Ya.: 1968, ‘Measurements of the Phase Dependence of the 0.8-cm Radio Emission of Mercury, and Some Properties of its Surface Layer’, Astron. Zh. 45, 378; transl. in Soviet Astron. — AJ 12, 299.

    Google Scholar 

  • Griggs, M.: 1968, ‘Emissivities of Natural Surfaces in the 8- to 14-Micron Spectral Region’, J. Geophys. Res. 73, 7545.

    Google Scholar 

  • Hobbs, R. W., Corbett, H. H., and Santini, N. J.: 1967, ‘Preliminary Results of Measurements of Radio Sources at 9.55 mm Wavelength (abstract)’, Astron. J. 72, 303.

    Google Scholar 

  • Hovis, W. A. and Callahan, W. R.: 1966, ‘Infrared Reflectance Spectra of Igneous Rocks, Tuffs, and Red Sandstone from 0.5–22μ’, J. Opt. Soc. Am. 56, 639.

    Google Scholar 

  • Howard, W. E. III, Barrett, A. H., and Haddock, F. T.: 1962, ‘Measurement of Microwave Radiation from the Planet Mercury’, Astrophys. J. 136, 995.

    Google Scholar 

  • Jaffe, L. D.: 1969, ‘The Surveyor Lunar Landings’, Science 164, 774.

    Google Scholar 

  • Kaftan-Kassim, M. A. and Kellermann, K. I.: 1967, ‘Measurements of the 1.9-cm Thermal Radio Emission from Mercury’, Nature 213, 272.

    Google Scholar 

  • Kellermann, K. I.: 1965, ‘11-cm Observations of the Temperature of Mercury’, Nature 205, 1091.

    Google Scholar 

  • Kellermann, K. I.: 1966, ‘The Thermal Radio Emission from Mercury, Venus, Mars, Saturn, and Uranus’, Icarus 5, 478.

    Google Scholar 

  • Kellermann, K. I., Pauliny-Toth, I. I. K., and Williams, P. J. S.: 1969, ‘The Spectra of Radio Sources in the Revised 3C Catalogue’, Astrophys. J. 157, 1.

    Google Scholar 

  • Klein, M. J.: 1968, ‘Measurements of the 8-GHz Phase Effect of Mercury During Seven Synodic Periods (abstract)’, Astron. J. 73, S102.

    Google Scholar 

  • Klein, M. J.: 1970a, ‘Mercury: Recent Observations at 3.75 cm Wavelength’, Radio Science 5, 397.

    Google Scholar 

  • Klein, M. J.: 1970b, ‘The Planet Mercury: Measurements of Variations in the Microwave Disk Temperature’, in preparation; also Ph.D. Thesis, University of Michigan, Ann Arbor, 1968.

  • Krotikov, V. D.: 1963, ‘Toward a Theory of the Lunar Integral Radio Emission’, Radiofiz. 6, 889.

    Google Scholar 

  • Krotikov, V. D. and Shchuko, O. B.: 1963, ‘The Heat Balance of the Lunar Surface During a Lunation’, Astron. Zh. 40, 297; transl. in Soviet Astron. — AJ 7, 228.

    Google Scholar 

  • Krotikov, V. D. and Troitskii, V.: 1963, ‘Thermal Conductivity of Lunar Material from Precise Measurements of Lunar Radio Emission’, Astron. Zh. 40, 158; transl. in Soviet Astron. — AJ 7, 119.

    Google Scholar 

  • Kutuza, B. G., Losovskii, B. J., and Salomonovich, A. E.: 1965, ‘Measurements of the Radio Emission of Mercury at 8-mm Wavelength’, Astron. Tsirkulyar 5, No. 327.

    Google Scholar 

  • Leighton, R. B. and Murray, B.C.: 1966, ‘Behavior of Carbon Dioxide and Other Volatiles on Mars’, Science 153, 136.

    Google Scholar 

  • Linsky, J. L.: 1966, ‘Models of the Lunar Surface Including Temperature-Dependent Thermal Properties’, Icarus 5, 606.

    Google Scholar 

  • Liu, H.-S. and O'Keefe, J. A.: 1965, ‘Theory of Rotation for the Planet Mercury’, Science 150, 1717.

    Google Scholar 

  • McGovern, W. E., Gross, S. H., and Rasool, S. I.: 1965, ‘Rotation Period of the Planet Mercury’, Nature 208, 375.

    Google Scholar 

  • Moroz, V. I.: 1964, ‘Infrared Spectrum of Mercury (λ = 1.0−3.9μ)’, Astron. Zh. 41, 1108; transl. in Soviet Astron. — AJ 8, 882 (1965).

    Google Scholar 

  • Morrison, D.: 1968, ‘On the Interpretation of Mercury Observations at Wavelengths of 3.4 and 19 mm’, Astrophys. J. 152, 661.

    Google Scholar 

  • Morrison, D.: 1968, ‘Thermal Models and Microwave Temperatures of the Planet Mercury’, Smithsonian Astrophys. Obs. Spec. Rept. No. 292.

  • Morrison, D. and Klein, M. J.: 1970, ‘The Microwave Spectrum of Mercury’, Astrophys. J. 160, 325.

    Google Scholar 

  • Morrison, D. and Sagan, C.: 1967, ‘The Microwave Phase Effect of Mercury’, Astrophys. J. 150, 1105.

    Google Scholar 

  • Morrison, D. and Sagan, C.: 1968, ‘Interpretation of the Microwave Phase Effect of Mercury (abstract)’, Astron. J. 73, 527.

    Google Scholar 

  • Morrison, D., Sagan, C., and Pollack, J. B.: 1969, ‘Martian Temperatures and Thermal Properties’, Icarus 11, 36.

    Google Scholar 

  • Murray, B. C.: 1967, ‘Infrared Radiation from the Daytime and Nighttime Surfaces of Mercury (abstract)’, Trans. Amer. Geophys. Union 48, 148.

    Google Scholar 

  • Murray, B. C.: 1968, Paper given at meeting in Kiev, USSR, October 1968.

  • O'Leary, B. T. and Rea, D. G.: 1967, ‘On the Polarimetric Evidence for an Atmosphere on Mercury’, Astrophys. J. 148, 249.

    Google Scholar 

  • Peale, S. J. and Gold, T.: 1965, ‘Rotation of the Planet Mercury’, Nature 206, 1240.

    Google Scholar 

  • Pettingill, G. H.: 1968, ‘Radar Studies of the Planets’ in Radar Astronomy (ed. by J. V. Evans and T. Hagfors), McGraw-Hill, New York, p. 275.

    Google Scholar 

  • Pettingill, G. H. and Dyce, R. B.: 1965, ‘A Radar Determination of the Rotation of the Planet Mercury’, Nature 206, 1240.

    Google Scholar 

  • Pettit, E.: 1961, ‘Planetary Temperature Measurements’, in Planets and Satellites (ed. by G. P. Kuiper and B. M. Middlehurst), p. 400, University of Chicago, Chicago.

    Google Scholar 

  • Pettit, E. and Nicholson, S. B.: 1923, ‘Measurements of the Radiation from the Planet Mercury’, Publ. Astron. Soc. Pacific 35, 194.

    Google Scholar 

  • Pettit, E. and Nicholson, S. B.: 1936, ‘Radiation from the Planet Mercury’, Astrophys. J. 83, 84.

    Google Scholar 

  • Piddington, J. H. and Minnett, H. C.: 1949, ‘Microwave Thermal Radiation from the Moon’, Australian J. Sci. Res. 2, 63.

    Google Scholar 

  • Pollack, J. B. and Morrison, D.: 1970, ‘Venus: Determination of Atmospheric Parameters from the Microwave Spectrum’, Icarus, in press.

  • Pollack, J. B. and Sagan, C.: 1965, ‘The Microwave Phase Effect of Venus’, Icarus 4, 62.

    Google Scholar 

  • Rasool, S. I., Gross, S. H., and McGovern, W. E.: 1965, ‘The Atmosphere of Mercury’, Space Sci. Rev. 5, 565.

    Google Scholar 

  • Sagan, C.: 1966, ‘The Photometric Properties of Mercury’, Astrophys. J. 144, 1218.

    Google Scholar 

  • Sagan, C. and Morrison, D.: 1968, ‘The Planet Mercury’, Sci. J. 4, No. 12, 72.

    Google Scholar 

  • Shapiro, I. I.: 1967, ‘Theory of the Radar Determination of Planetary Rotations’, Astron. J. 72, 1309.

    Google Scholar 

  • Shapiro, I. I.: 1968, ‘Spin and Orbital Motions of Planets’, in Radar Astronomy (ed. by Evans and Hagfors), McGraw-Hill, New York, p. 143.

    Google Scholar 

  • Sinton, W. M.: 1962, ‘Temperatures on the Lunar Surface’, in Physics and Astronomy of the Moon (ed. by Z. Kopal), Chapter 11, Academic Press, New York.

    Google Scholar 

  • Sinton, W. and Strong, J.: 1960, Radiometric Observations of Mars', Astrophys. J. 131, 459.

    Google Scholar 

  • Smith, B. A. and Reese, E. J.: 1968, Mercury's Rotation Period: Photographic Confirmation', Science 162, 1275.

    Google Scholar 

  • Soter, S. L.: 1966, ‘Mercury: Infrared Evidence for Nonsynchronous Rotation’, Science 153, 1112.

    Google Scholar 

  • Soter, S. L. and Ulrichs, J.: 1967, ‘Rotation and Heating of the Planet Mercury’, Nature 214, 1315.

    Google Scholar 

  • Spinrad, H., Field, G. B., and Hodge, P. W.: 1965, ‘Spectroscopic Observations of Mercury’, Astrophys. J. 141, 1155.

    Google Scholar 

  • Troitskii, V. S.: 1964, ‘Certain Results of Lunar Investigation by Radiophysical Methods’, Astron. Zh. 41, 104; transl, in Soviet Astron. — AJ 8, 76.

    Google Scholar 

  • Troitskii, V. S.: 1967, ‘Thermal Conductivity of Lunite as Dependent on Temperature’, Nature 213, 688.

    Google Scholar 

  • Troitskii, V. S., Burov, A. B., and Alyoshina, T. N.: 1968, ‘Influence of the Temperature Dependence of Lunar Material Properties on the Spectrum of the Moon's Radio Emission’, Icarus 8, 423.

    Google Scholar 

  • Ulrichs, J. and Campbell, M. J.: 1968, ‘Heat Transfer by Radiation in the Lunar Soil (abstract)’, Trans. Am. Geophys. Union 49, 226.

    Google Scholar 

  • Ulrichs, J. and Campbell, M. J.: 1969, ‘Radiative Heat Transfer in the Lunar and Mercurian Surfaces’, Icarus 11, 180.

    Google Scholar 

  • de Vacouleurs, G.: 1964, ‘Geometric and Photometric Parameters of the Terrestrial Planets’, Icarus 3, 187.

    Google Scholar 

  • Vetukhnovskaya, Yu. N. and Kuz'min, A. D.: 1967, ‘The Planet Mercury’, Astron. Vestnik 1, 198; transl. in Solar System Res. 1, 152.

    Google Scholar 

  • Vetukhnovskaya, Yu. N. and Kuz'min, A. D.: 1968, ‘A Theory for the Radio Emission from Mercury’, Astron. Vestnik 2, 65; transl. in Solar System Res. 2, 55.

    Google Scholar 

  • Walker, J. C. G.: 1961, ‘The Thermal Budget of the Planet Mercury’, Astrophys. J. 133, 274.

    Google Scholar 

  • Wechsler, A. E. and Glaser, P. E.: 1965, ‘Pressure Effects on Postulated Lunar Materials’, Icarus 4, 335.

    Google Scholar 

  • Wechsler, A. E. and Simon, I.: 1966, A. D. Little, Inc., Report under Contract NAS 8-200076.

  • Winter, D. F. and Saari, J. M.: 1969, ‘A Particulate Thermophysical Model of the Lunar Soil’, Astrophys. J. 156, 1135.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morrison, D. Thermophysics of the planet Mercury. Space Sci Rev 11, 271–307 (1970). https://doi.org/10.1007/BF00241524

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00241524

Keywords

Navigation