Skip to main content
Log in

Inhibition of Mg2+ current by single-gene mutation in Paramecium

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

“Eccentric” is a newly-isolated mutant of Paramecium tetraurelia that fails to swim backwards in response to Mg2+. In the wild type, this backward swimming results from Mg2+ influx via a Mg2+-specific ion conductance (I Mg. Voltage-clamp analysis confirmed that, as suspected, step changes in membrane potential over a physiological range fail to elicit I Mg from eccentric.

Further electrophysiological investigation revealed a number of additional ion-current defects in eccentric: (i) The Ca2+ current activated upon depolarization inactivates more slowly in eccentric than in the wild type, and it requires longer to recover from this inactivation. (ii) The Ca2+-dependent Na+ current deactivates significantly faster in the mutant, (iii) The two K+ currents observed upon hyperpolarization are reduced by >60% in eccentric.

It is difficult to envision how these varied pleiotropic effects could result from loss of a single ion current. Rather, they suggest that the eccentric mutation affects a global regulatory system. Two plausible hypotheses are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altura, B.M., Durlach, J., Seelig, M.S. 1987. Magnesium in Cellular Processes and Medicine. Karger, Basel

    Google Scholar 

  • Blatter, L.A. 1990. Intracellular free magnesium in frog skeletal muscle studied with a new type of magnesium-selective microelectrode: interactions between magnesium and sodium in regulation of [Mg2+]i. Pfluegers Arch. 416:238–246

    Google Scholar 

  • Brehm, P., Eckert, R. 1978. Calcium entry leads to inactivation of calcium channel in Paramecium. Science 202:1203–1206

    Google Scholar 

  • Brehm, P., Eckert, R., Tillotson, D. 1980. Calcium-mediated inactivation of calcium current in Paramecium. J. Physiol. 306:193–203

    Google Scholar 

  • Buri, A., McGuigan, J.A.S. 1990. Intracellular free magnesium and its regulation, studied in isolated ferret ventricular muscle with ion-selective microelectrodes. Exp. Physiol. 75:751–761

    Google Scholar 

  • Chad, J., Kalman, D., Armstrong, D. 1987. The role of cyclic AMP-dependent phosphorylation in the maintenance and modulation of voltage-activated calcium channels. in: Cell Calcium and the Control of Membrane Transport. L.J. Mandel and D.C. Eaton, editors, pp. 167–186. Rockefeller, New York

    Google Scholar 

  • Ciani, S., Ribalet, B. 1988. Ion permeation and rectification in ATP-sensitive channels from insulin-secreting cells (RINm5F): Effects of K+, Na+ and Mg2+. J. Membrane Biol. 103:171–180

    Google Scholar 

  • Colamartino, G., Menini, A., Torre, V. 1991. Blockage and permeation of divalent cations through the cyclic GMP-activated channel from tiger salamander retinal rods. J. Physiol. 440:189–206

    Google Scholar 

  • Duchatelle-Gourdon, I., Hartzell, H.C., Lagrutta, A.A. 1989. Modulation of the delayed rectifier potassium current in frog myocytes by β-adrenergic agonists and magnesium. J. Physiol. 415:251–274

    Google Scholar 

  • Duchatelle-Gourdon, I., Lagrutta, A.A., Hartzell, H.C. 1991. Effects of Mg2+ on basal and β-adrenergic-stimulated delayed rectifier potassium current in frog atrial myocytes. J. Physiol. 435:333–347

    Google Scholar 

  • Elliott, D.A., Rizack, M.A. 1974. Epinephrine and adrenocorticotrophic hormone-stimulated magnesium accumulation in adipocytes and their plasma membranes. J. Biol. Chem. 249:3985–3990

    Google Scholar 

  • Erdos, J.J., Maguire, M.E. 1983. Hormone-sensitive magnesium transport in murine S49 lymphoma cells: characterization and specificity for magnesium. J. Physiol. 337:351–371

    Google Scholar 

  • Grubbs, R.D. 1991. Effect of epidermal growth factor on magnesium homeostasis in BC3H1 myocytes. Am. J. Physiol. 260:C1158-C1164

    Google Scholar 

  • Grubbs, R.D., Maguire, M.E. 1987. Magnesium as a regulatory cation: criteria and evaluation. Magnesium 6:113–127

    Google Scholar 

  • Hennessey, T.M., Kung, C. 1985. Slow inactivation of the calcium current of Paramecium is dependent on voltage and not internal calcium. J. Physiol. 365:165–179

    Google Scholar 

  • Hinrichsen, R.D., Saimi, Y. 1984. A mutation that alters properties of the calcium channel in Paramecium tetraurelia. J. Physiol. 351:397–410

    Google Scholar 

  • Hinrichsen, R.D., Saimi, Y., Kung, C. 1984. Mutants with altered Cachannel properties in Paramecium tetraurelia: isolation, characterization, and genetic analysis. Genetics 108:545–558

    Google Scholar 

  • Horie, M., Irisawa, H., Noma, A. 1987. Voltage-dependent magnesium block of adenosine-triphosphate-sensitive potassium channel in guinea-pig ventricular cells. J. Physiol. 387:251–272

    Google Scholar 

  • Johnson, J.W., Ascher, P. 1990. Voltage-dependent block by intra-cellular Mg2+ of N-methyl-d-aspartate-activated channels. Biophys. J. 57:1085–1090

    Google Scholar 

  • Kink, J.A. Maley, M.E., Preston, R.R., Ling, K.-Y., Wallen-Friedman, M.A., Saimi, Y., Kung, C. 1990. Mutations in Paramecium calmodulin indicate functional differences between the C-terminal and N-terminal lobes in vivo. Cell 62:165–174

    Google Scholar 

  • Kung, C., Preston, R.R., Maley, M.E., Ling, K.-Y., Kanabrocki, J.A., Seavey, B.R., Saimi, Y. 1992. In vivo Paramecium mutants show that calmodulin orchestrates membrane responses to stimuli. Cell Calcium 13:413–425

    Google Scholar 

  • Lefort-Tran, M., Aufderheide, K., Pouphile, M., Rossignol, M., Beisson, J. 1981. Control of exocytotic processes: cytological and physiological studies of trichocyst mutants in Paramecium tetraurelia. J. Cell Biol. 88:301–311

    Google Scholar 

  • Levitan, I.B. 1985. Phosphorylation of ion channels. J. Membrane Biol. 87:177–190

    Google Scholar 

  • MacDermott, M. 1990. The intracellular concentration of free magnesium in extensor digitorum longus muscles of the rat. Exp. Physiol. 75:763–769

    Google Scholar 

  • Machemer, H., Deitmer, J.W. 1985. Mechanoreception in ciliates. in: Progress in Sensory Physiology, Vol. 5. H. Autrum, D. Ottoson, E.R. Perl, R.F. Schmidt, H. Simazu and W.D. Willis, editors, pp. 81–118. Springer-Verlag, Berlin

    Google Scholar 

  • Maguire, M.E. 1984. Hormone-sensitive magnesium transport and regulation of adenylate cyclase. Trends Pharmacol. Sci. 12:73–77

    Google Scholar 

  • Matsuda, H., Saigusa, A., Irisawa, H. 1987. Ohmic conductance through the inwardly rectifying K channels and blocking by internal Mg2+. Nature 325:156–159

    Google Scholar 

  • Murphy, E., Freudenrich, C.C., Levy, L.A., London, R.E., Lieberman, M. 1989. Monitoring cytosolic free magnesium in cultured chicken heart cells by use of the fluorescent indicator Furaptra. Proc. Natl. Acad. Sci. USA 86:2981–2984

    Google Scholar 

  • Preston, R.R. 1990. A magnesium current in Paramecium. Science 250:285–288

    Google Scholar 

  • Preston, R.R., Saimi, Y., Kung, C. 1990a. Evidence for two K+ currents activated upon hyperpolarization of Paramecium tetraurelia. J. Membrane Biol. 115:41–50

    Google Scholar 

  • Preston, R.R., Saimi, Y., Kung, C. 1992. Calcium current activated upon hyperpolarization of Paramecium. J. Gen. Physiol. 100:233–251

    Google Scholar 

  • Preston, R.R., Wallen-Friedman, M.A., Saimi, Y., Kung, C. 1990b). Calmodulin defects cause the loss of Ca2+-dependent K+ currents in two pantophobiac mutants of Paramecium tetraurelia. J. Membrane Biol. 115:51–60

    Google Scholar 

  • Preston, R.R., Kink, J.A. Hinrichsen, R.D., Saimi, Y., Kung, C. 1991. Calmodulin mutants and Ca2+-dependent channels in Paramecium. Annu. Rev. Physiol. 53:309–319

    Google Scholar 

  • Pusch, M. 1990a. Open-channel block of Na+ channels by intracellular Mg2+. Eur. Biophys. J. 18:317–326

    Google Scholar 

  • Pusch, M. 1990b. Divalent cations as probes for structure-function relationships of cloned voltage-dependent sodium channels. Eur. Biophys. J. 18:327–333

    Google Scholar 

  • Pusch, M., Conti, F., Stühmer, W. 1989. Intracellular magnesium blocks sodium outward currents in a voltage-and dose-dependent manner. Biophys. J. 55:1267–1271

    Google Scholar 

  • Rotevatn, S., Murphy, E., Levy, L.A., Raju, B., Lieberman, M., London, R.E. 1989. Cytosolic free magnesium concentration in cultured chick heart cells. Am. J. Physiol. 257:C141-C146

    Google Scholar 

  • Saimi, Y. 1986. Calcium-dependent sodium currents in Paramecium: mutational manipulations and effects of hyper-and depolarization. J. Membrane Biol. 92:227–236

    Google Scholar 

  • Saimi, Y., Ling, K.-Y. 1990. Calmodulin activation of calcium-dependent sodium channels in excised membrane patches of Paramecium. Science 249:1441–1444

    Google Scholar 

  • Strata, P., Carbone, E. 1991. Mg2+ and Excitable Membranes. Springer-Verlag, Berlin

    Google Scholar 

  • Tarr, M., Trank, J.W., Goertz, K.K. 1989. Intracellular magnesium affects IK in single frog atrial cells. Am. J. Physiol. 257:H1663-H1669

    Google Scholar 

  • Trautwein, W., Hescheler, J. 1990. Regulation of cardiac l-type calcium current by phosphorylation and G-proteins. Annu. Rev. Physiol. 52:257–274

    Google Scholar 

  • Van Houten, J., Van Houten, J. 1982. Computer simulation of Paramecium chemokinesis behavior. J. Theor. Biol. 98:453–468

    Google Scholar 

  • Vandenberg, C.A. 1987. Inward rectification of a potassium channel in cardiac ventricular cells depends on internal magnesium ions. Proc. Natl. Acad. Sci. USA 84:2560–2564

    Google Scholar 

  • White, R.E., Hartzell, H.C. 1989. Magnesium ions in cardiac function. Regulator of ion channels and second messengers. Biochem. Pharmacol. 38:859–867

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We are grateful to Dr. Yoshiro Saimi for his comments and suggestions on this work, and for the support of the Lucille P. Markey Charitable trust and the National Institutes of Health (GM22714 and GM38646).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Preston, R.R., Kung, C. Inhibition of Mg2+ current by single-gene mutation in Paramecium . J. Membarin Biol. 139, 203–212 (1994). https://doi.org/10.1007/BF00232624

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00232624

Key words

Navigation