Skip to main content
Log in

Global bifurcation structure of a Bonhoeffer-van der Pol oscillator driven by periodic pulse trains

Comparison with data from a periodically inhibited biological pacemaker

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The Bonhoeffer-van der Pol (BVP) oscillator is a valuable dynamical system model of pacemaker neurons. Isochrons, phase transition curves (PTC), and two dimensional bifurcation diagrams served to analyze the neuron's response to periodic pulse stimuli. Responses are described and explained in terms of the nonlinear dynamical system theory. An important issue in the generation of spikes by pacemaker neurons is the existence of both slow and fast dynamics in the state point's trajectory in the phase plane. It is this feature in particular that makes the BVP oscillator a faithful model of living pacemaker neurons. Comparison of the model's responses with those of a living pacemaker was based also on return maps of interspike intervals. Analyzed in detail were the complex discharges called ‘stammering’ which involve interspike intervals that arise unpredictably and exhibit histograms with several modes separated by the equal intervals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aihara K, Matsumoto G, Ikegaya Y (1984) Periodic and non-periodic responses of a periodically forced Hodgkin-Huxley oscillator. J Theor Biol 109:249–269

    PubMed  Google Scholar 

  • Bonhoeffer KF (1948) Activation of passive iron as a model for the excitation of nerve. J Gen Physiol 32:69–91

    Article  Google Scholar 

  • Chialvo DR, Apkarian AV (1993) Modulated noisy biological dynamics: three examples. J Stat Phys 70:375–391

    Article  Google Scholar 

  • Ermentrout GB (1981) n:m phase locking of weakly coupled oscillators. J Math Biol 12:327–342

    Article  Google Scholar 

  • Ermentrout GB, Rinzel J (1984) Beyond a pacemaker's entrainment limit: Phase walk-through. Am J Physiol 246 (Regul Integrative Comp Physiol 15):R102-R106

    PubMed  Google Scholar 

  • FitzHugh R (1961) Impulses and physiological states in theoretical models of nerve membrane. Biophy J 1:445–466

    Google Scholar 

  • Guttman R, Lewis S, Rinzel J (1980) Control of repetitive firing in squid axion membrane as a model for a neuroneoscillator. J Physiol 305:377–395

    PubMed  Google Scholar 

  • Hayashi H, Ishizuka S (1992) Chaotic nature of bursting discharges in the Onchidium pacemaker neuron. J Theor Biol 156:269–291

    Google Scholar 

  • Jensen MH (1983) Complete devil's staircase, fractal dimension, and universality of mode-locking structure in the circle map. Phys Rev Lett 50.21:713–747

    Google Scholar 

  • Kawato M (1981) Transient and steady state phase response curve of limit cycle oscillators. J Math Biol 12:13–30

    Article  Google Scholar 

  • Keener JP, Glass L (1984) Global bifurcation of a periodically forced nonlinear oscillator. J Math Biol 21:175–190

    Article  PubMed  Google Scholar 

  • Kepler TB, Abbott LF, Marder E (1992) Reduction of conductance-based neuron models. Biol Cybern 66:381–387

    Article  PubMed  Google Scholar 

  • Kiemel T, Holmes P (1987) A model for the periodic synaptic inhibition of a neuronal oscillator. IMA J Math Appl Med Biol 4:150–169

    Google Scholar 

  • Koch C, Segev I (1989) Methods in neuronal modeling: from synapse to networks. MIT Press, Cambridge, Mass

    Google Scholar 

  • Kohn AF, Freitas da Rocha A, Segundo JP (1981) Presynaptic irregularity and pacemaker inhibition. Biol Cybern 41:5–18

    Article  Google Scholar 

  • Longtin A (1993) Stochastic resonance in neuron models. J Stat Phys 70:309–327

    Article  Google Scholar 

  • Matsumoto G, Aihara K, Hanyu Y, Takahashi N, Yoshizawa S, Nagumo J (1987) Chaos and phase locking in normal squid axons. Phys Lett A 123:162–166

    Article  Google Scholar 

  • Morris C, Lecar H (1981) Voltage oscillations in the barnacle giant muscle fiber. Biophys J 35:193–213

    PubMed  Google Scholar 

  • Nagumo J, Arimoto S, Yoshizawa S (1962) An active pulse transmission line stimulating nerve axon. Proc IRE 50:2061–2070

    Google Scholar 

  • Nagumo J, Sato S (1972) On a response characteistic of a mathematical neuron model. Kybernetik 10:155–164

    Article  PubMed  Google Scholar 

  • Nomura T, Sato S, Doi S, Segundo JP, Stiber MD (1993) A Bonhoeffer-van der Pol oscillator model of locked and non-locked behaviors of living pacemaker neurons. Biol Cybern 69:429–437

    Article  PubMed  Google Scholar 

  • Parlitz U, Lauterborn W (1987) Period-doubling cascades and devil's staircases of the driven van der Pol oscillator. Phys Rev A 36:1428–1434

    Article  PubMed  Google Scholar 

  • Pérez R, Glass L (1982) Bistability, period doubling bifurcations and chaos in a periodically forced oscillator. Phys Lett 90 A:441–443

    Article  Google Scholar 

  • Perkel DH, Bullock TH (1968) Neural coding. Neurosci Res Prog Bull 6:221–248

    Google Scholar 

  • Perkel DH, Schulman JH, Bullock TH, Moore GP, Segundo JP (1964) Pacemaker neurons: effects of regularly spaced synaptic inputs. Science 145:61–63

    PubMed  Google Scholar 

  • Pomeau Y, Manneville P (1980) Intermittent transition to turbulence in dissipative dynamical systems. Commun Math Phys 74:184–197

    Article  Google Scholar 

  • Sato S, Doi S (1992) Response characteristics of the BVP neuron model to periodic stimuli. Math Biosci 112:243–259

    Article  PubMed  Google Scholar 

  • Segundo JP, Altshuler E, Stiber M, Garfinkel A (1991a) Periodic inhibition of living pacemaker neurons. I. Locked, intermittent, messy and hopping behaviors. Int J Bifurcation Chaos 1:549–581

    Article  Google Scholar 

  • Segundo JP, Altshuler E, Stiber M, Garfinkel A (1991b) Periodic inhibition of living pacemaker neurons. II. Influences of driver rates, of transients and of non-driven post-synaptic rates. Int J Bifurcation Chaos 1:873–890

    Article  Google Scholar 

  • Siegel RM, Read HL (1993) Models of the temporal dynamics of visual processing. J Stat Phys 70:297–308

    Article  Google Scholar 

  • Stiber MD (1992) Dynamics of synaptic integration. PhD thesis, University of California, Los Angeles

    Google Scholar 

  • Stiber MD, Segundo JP (1993) Dynamics of synaptic transfer in living and simulated neurons. IEEE International Conference on Neural Networks, San Franisco, pp 75–80

  • Takahashi N, Hanyu Y, Musha T, Kubo R, Matsumoto G (1990) Global bifurcation structure in periodically simulated giant axons of squid. Physica D 43:318–334

    Article  Google Scholar 

  • Yasin S, Friedman M, Goshen S, Rabinovitch A, Thieberger R (1993) Intermittency and phase locking of the Bonhoeffer van der Pol model. J Theor Biol 160:179–184

    Article  Google Scholar 

  • Yoshizawa S, Osada H, Nagumo J (1982) Pulse sequences generated by a degenerate analog neuron model. Biol Cybern 45:23–33

    Article  PubMed  Google Scholar 

  • Winfree AT (1974) Patterns of phase compromise in biological cycles. J Math Biol 1:73–95

    Google Scholar 

  • Winfree AT (1980) The geometry of biological time. Springer, Berlin Heidelberg, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by Trent H. Wells Jr. Inc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nomura, T., Sato, S., Doi, S. et al. Global bifurcation structure of a Bonhoeffer-van der Pol oscillator driven by periodic pulse trains. Biol. Cybern. 72, 55–67 (1994). https://doi.org/10.1007/BF00206238

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00206238

Keywords

Navigation