Skip to main content
Log in

Thermal expansion of SrZrO3 and BaZrO3 perovskites

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

High-temperature X-ray diffraction studies of SrZrO3 and BaZrO3 perovskites have been carried out to 1200° C. The diffraction patterns are analyzed with Rietveld method so as to refine the unit cell dimensions. The volumetric thermal expansion coefficient are observed to be 2.98*10-5K-1 for orthorhombic Pbnm phase, 3.24*10-5K-1 for orthorhombic Cmcm phase, 3.75*10-5K-1 for tetragonal I4/mcm phase of SrZrO3 perovskite, and 2.06*10-5K-1 for cubic Pm3m phase of BaZrO3 perovskite, respectively. The linear thermal expansion coefficients of SrZrO3 perovskite show considerable anisotropy of α a c b for orthorhombic Pbnm phase, which reflect the decrease of distortion of the perovskite. It is demonstrated that thermal expansion of the centrosymmetrically distorted ABX3 perovskite can be empirically expressed as a combination of the changes of [B-X] bond length and tilting angle of BX6 octahedral framework. The octahedral tilting is considered to be the primary order parameter for the ferroelastic type of structural phase transitions in perovskite. Thermodynamically, the tilting induced volume change denotes the “excess volume” and the corresponding thermal expansion represents the “excess thermal expansion” for the lower symmetry phase with respect to its prototype of the cubic perovskite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aleksandrov KS (1976) The sequences of structural phase transitions in perovskites, Ferroelectrics 16:801–805

    Google Scholar 

  • Aleksandrov KS (1978) Mechanisms of the ferroelectric and structural phase transitions. Structural distortion in perovskites, Ferroelectrics 20:61–67

    Google Scholar 

  • Ahtee A, Ahtee M, Glazer AM, Hewat AW (1976) The structure of orthorhombic SrZrO3 by neutron powder diffraction, Acta Crystallogr B32:3243–3246

    Google Scholar 

  • Ahtee M, Glazer AM, Hewat AW (1978) High-temperature phases of SrZrO3, Acta Crystallogr B34:752–758

    Google Scholar 

  • Carlsson L (1967) High-temperature phase transitions in SrZrO3, Acta Crystallogr 23:901–905

    Google Scholar 

  • Cowley RA (1976) Acoustic phonon instabilities and structural phase transitions, PHys Rev B13:4877–4885

    Google Scholar 

  • Cowley RA, Bayers WJL, Dolling G (1969) Relationship of normal modes of vibration of strontium titanate and its antiferroelectric phase transition at 110 K. Solid State Commun 1:181–184

    Google Scholar 

  • Foëx M, Traverse J-P, Coutures J, Étude de la CR (1967) Structure cristalline des zirconates alcalino-terreux à haute température, Acad Sci Paris t. 264:1837–1840

    Google Scholar 

  • Glazer AM (1972) The classification of tilted octahedral in perovskites, Acta Crystallogr B28:3384–3392

    Google Scholar 

  • Glazer AM (1975) Simple ways of determining perovskite structure Acta Crystallogr A31:756–763

    Google Scholar 

  • Hazen RM, Finger LW (1982) Comparative crystal chemistry: temperature, pressure, composition and the variation of crystal structure. Wiley New York, pp. 115–164

    Google Scholar 

  • Hirotsu S, Suzuki T (1978) Elastic constants and thermal expansion of CsPbCl3, J Phys Soc Jpn 44:1604–1611

    Google Scholar 

  • Knittle E, Jeanloz R, Smith GL (1986) Thermal expansion of silicate perovskite and stratification of the Earth's mantle, Nature 319:214–216

    Google Scholar 

  • Kudoh Y, Wolf GH, Buseck PR, Takeda H, Ito E (1990) Stressinduced ferroelastic behavior in MgSiO3 perovskite, preprint

  • Landau LD, Lifshitz EM (1969), Statistical Physics, 2nd edn, Pergamon Press, Oxford

    Google Scholar 

  • Larson AC, Von Dreele RB (1988) GSAS manual, Report LAUR 86-748, Los Alamos National Laboratory

  • Megaw HD (1971) Crystal structures and thermal expansion, Mater Res Bull 6:1007–1018

    Google Scholar 

  • Midorikawa M, Ishibashi Y, Takagi Y (1976) Dilatometric and pressure studies of phase transitions in CsSrCl3, J Phys Soc Jpn 41:2001–2004

    Google Scholar 

  • Ohama N, Sakashita H, Okazaki A (1984) The temperature dependence of the lattice constant of SrTiO3 around the 105 K transition, Phase Transition 4:81–90

    Google Scholar 

  • O'Keeffe M, Hyde BG (1977) Some structures topologically related to cubic perovskite (E21, ReO3) (D09) and Cu3Au (L12), Acta Crystallogr B33:3802–3813

    Google Scholar 

  • Rietveld HM (1969) A profile refinement method for nuclear and magnetic structure, J Appl Cryst 2:65–71

    Google Scholar 

  • Ross NL, Hazen RM (1989) Single crystal X-ray diffraction study of MgSiO3 perovskite from 77 to 400 K, Phys Chem Minerals 16:415–420

    Google Scholar 

  • Rousseau M, Gesland JY, Julliard J, Nouet J, Zarembowitch J, Zarembowitch A (1975) Crystallographic, elastic, and Raman Scattering investigations of structural phase transitions in RbCdF3 and TlCdF3, Phys Rev B 12:1579–1590

    Google Scholar 

  • Salje E (1989) Characteristics of perovskite-related materials, Phil Trans R Soc Lond A328:409–416

    Google Scholar 

  • Sato M, Soejima Y, Ohama N, Okazaki A, Scheel HJ, Müller KA (1985) The lattice constant vs. temperature relation around the 105 K transition of a flux-grown SrTiO3 crystal, Phys Transitions 5:207–218

    Google Scholar 

  • Wadhawan VK (1982) Ferroelasticity and related properties of crystals, Phase Transitions 3:3–103

    Google Scholar 

  • Wang Y, Guyot F, Yeganeh-Haeri A, Liebermann RC (1990) Twinning in MgSiO3 perovskite, Science 248:468–471

    Google Scholar 

  • Wang Y, Weidner DJ, Liebermann RL, Liu X, Ko J, Vaughan MT, Zhao Y, Yeganeh-Haeri A, Pacalo REG (1991) Phase transition and thermal expansion of perovskite, Science 251:410–413

    Google Scholar 

  • Wolf GH, Bukowinski MST (1987) Theoretical study of the structural and thermoelastic properties of MgSiO3 and CaSiO3 perovskites: Implications for lower mantle composition, in Manghnani MH, Syono Y (eds): High Pressure Research in Mineral Physics, Terra Sci. Publ., Tokyo, 313–331

    Google Scholar 

  • Yeganeh-Haeri A, Weidner DJ, Ito E (1989) Single-crystal elastic modules of magnesium metasilicate perovskite. In: Navrotsky A, Weidner D (eds.) Perovskite: A Structure of Great Interest to Geophysics and Material Science, A.G.U. Geophys Mono 45:13–35

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Weidner, D.J. Thermal expansion of SrZrO3 and BaZrO3 perovskites. Phys Chem Minerals 18, 294–301 (1991). https://doi.org/10.1007/BF00200187

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00200187

Keywords

Navigation