Skip to main content
Log in

Genetic environment of germanium-bearing gold-silver vein ores from the Wolyu mine, Republic of Korea

  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The Wolyu mine is one of the largest vein-type gold-silver-bearing epithermal systems in the Youngdong district and is the first gold-silver deposit in Korea found to contain significant germanium, in the form of argyrodite (Ag8GeS6). Mineralized veins (78.9 ± 1.2 Ma) crosscutting Late Cretaceous hostrock tuff and quartz porphyry (81.5 ± 1.8 Ma) consist of three stages of quartz and carbonates, the first of which contains pyrite, basemetal sulfides and Au-Ag-minerals. Stage I Au-Ag-Ge-mineralized veins show a systematic variation of mineral assemblage with time: (1) quartz + pyrite; (2) quartz + pyrite + sphalerite + electrum + argentite; (3) carbonate + quartz + sphalerite + electrum + argentite; (4) carbonate + native silver + argentite + Ag-sulfosalts + argyrodite + sphalerite. Calculated values of temperature and sulfur activity are: assemblage (1), 360-280°C and 10−7-10−10; (2), 280-210°C and 10−10-10−14; (3), 210-180°C and 10−14-10−16; (4), 180-155°C and 10−17-10−18. These data, the frequent association of gold with sulfides, and the abundance of pyrite in alteration zones indicate that decreasing sulfur activity and cooling were important in triggering gold deposition. Hydrogen and oxygen isotope compositions of ore fluids display a systematic variation with increasing time. Within the main Ag-Au-Ge mineralization, δD and δ 18O values decrease with the transition from quartz to carbonate deposition (from -78 and −2.8% to −90 and −8.7%., respectively), indicating increasing involvement (mixing) of less evolved meteoric water which resulted in progressive cooling and dilution of ore fluids in the shallow (≈ 370–600 m) Wolyu epithermal system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnes, H.L. (1979) Solubilities of ore minerals. In: Barnes H.L. (ed.) Geochemistry of hydrothermal ore deposits. Wiley, New York, pp. 404–460

    Google Scholar 

  • Barton, P.B., Jr., Skinner, B.J. (1979) Sulfide mineral stabilities. In: Barnes H.L. (ed.) Geochemistry of hydrothermal ore deposits. Wiley, New York, pp. 287–403

    Google Scholar 

  • Barton, P.B., Jr., Toulmin, P., III (1964) The electrum-tarnish method for the determination of the fugacity of sulfur in laboratory sulfide systems. Geochim. Cosmochim. Acta 28:619–640

    Google Scholar 

  • Buchanan, L.J. (1979) The Las Torres mine, Guanajuato, Mexico: ore controls of a fossil geothermal system. Ph.D. thesis, Colorado School of Mines, 138 p.

  • Casadevall, T., Ohmoto, H. (1979) Sunnyside mine, Eureka mining district, San Juan County, Colorado: geochemistry of gold and base metal ore deposition in a volcanic environment: Econ. Geol. 72:1285–1320

    Google Scholar 

  • Choi, S.G., Chi, S.J., Park, S.W. (1988) Gold-Silver mineralization of the Au-Ag deposits at Youngdong district, Chungcheongbuk-Do (Korean). J. Korean Inst. Mining Geol. 21:367–380

    Google Scholar 

  • Choo, S.H. (1984) A study of Rb-Sr age determinations on the Ryeongnam Massif (I): Pyeonghae, Buncheon and Kimcheon granite gneisses (Korean). Annual Report, Korea Institut of Energy and Resources, pp. 7–39

  • Cluzel, D., Cadet, J.P., Lapierre, H. (1990) Geodynamics of the Ogcheon Belt (South Korea). Tectonophysics 183:41–56

    Google Scholar 

  • De Ronde, C.E.J. (1986) The Golden Cross gold-silver deposits. In: Monograph Series on Mineral Deposits 26:165–183. Gebruder Borntraeger, Berlin Stuttgart

  • Ellis, A.J. (1970) Quantitative interpretation of chemical characteristics of hydrothermal systems. Geothermics (Special Issue 2, Part I): 516–528

  • Ellis, A.J. (1979) Explored geothermal systems. In: Barnes H.L. (ed.) Geochemistry of hydrothermal ore deposits. Wiley, New York, pp. 632–683

    Google Scholar 

  • Ellis, A.J., Golding, R.M. (1963) The solubility of carbon dioxide above 100°C in water and in sodium chloride solutions. Am. J. Sci. 261:47–60

    Google Scholar 

  • Ellis, A.J., Mahon, W.A.J. (1967) Natural hydrothermal systems and experimental hot water/rock interactions (Pt. II). Geochim. Cosmochim. Acta 31:519–538

    Google Scholar 

  • Fournier, R.O., Truesdell, A.H. (1973) An empirical Na-K-Ca geothermometer for natural waters. Geochim. Cosmochim. Acta 37:1255–1275

    Google Scholar 

  • Friedman, I., O'Neil, J.R. (1977) Compilation of stable isotope fractionation factors of geochemical interest. U.S. Geol. Surv. Prof. Paper 440-KK: pp 1–12

  • Geological Survey of Korea (1972) Isotope ages and geologic map of Korea. Map 1972.7:1:2,000,000

  • Grinenko, V.A. (1962) Preparation of sulfur dioxide for isotopic analysis. Zeitschr. Neorganische Khimii 7:2478–2483

    Google Scholar 

  • Haas, J.L., Jr. (1979) The effect of salinity on the maximum thermal gradient of a hydrothermal system at hydrostatic pressure. Econ. Geol. 66:940–946

    Google Scholar 

  • Hall, W.E., Friedman, I. (1963) Composition of fluid inclusions, Cave-in-Rock fluorite district, Illinois and Upper Mississippi Valley zinc-lead district. Econ. Geol. 58:886–911

    Google Scholar 

  • Haynes, F.M. (1985) Determination of fluid inclusion compositions by sequential freezing. Econ. Geol. 80:1436–1439

    Google Scholar 

  • Heald, P., Foley, N.K., Hayba, D.O. (1987) Comparative anatomy of volcanic-hosted epithermal deposits: acid-sulfate and adulariasericite types. Econ. Geol. 82:1–26 (1987)

    Google Scholar 

  • Helgeson, H.C. (1969) Thermodynamics of hydrothermal systems at elevated temperatures and pressures. Am. J. Sci. 267:279–304

    Google Scholar 

  • Henley, R.W. (1973) Solubility of gold in hydrothermal chloride solutions. Chem. Geol. 11:73–87

    Google Scholar 

  • Kesler, S.E., Russell, N., Seaward, M., Rivera, J., McCurdy, K., Cumming, G.L., Sutter, J.F. (1981) Geology and geochemistry of sulfide mineralization underlying the Pueblo Viejo gold-silver oxide deposit, Dominican Republic. Econ. Geol. 76:1096–1117

    Google Scholar 

  • Kim, K.B., Hwang, J.H. (1986) Geological report of the Youngdong Sheet. Korea Institut of Energy and Resources, Seoul, 24p.

    Google Scholar 

  • Kim, K.H., Nakai, N (1988) Isotopic compositions of precipitations and ground waters in South Korea. J. Geol. Soc. Korea 24:37–46

    Google Scholar 

  • Lee, D.W. (1990) Sedimentation and tectonic evolution of the Cretaceous Youngdong basin, Korea. Ph.D. thesis, Korea University, 273 p.

  • Matsuhisa, Y., Goldsmith, R., Clayton, R.N. (1979) Oxygen isotope fractionation in the system quartz-albite-anorthite-water. Geochim. Cosmochim. Acta. 43:1131–1140

    Google Scholar 

  • McCrea, J.M. (1950) The isotope chemistry of carbonates and a paleotemperature scale. J. Chem. Physics. 18:849–857

    Google Scholar 

  • Nash, J.T. (1972) Fluid inclusion studies of some gold deposits in Nevada. US Geol. Survey Prof. Paper 800-C: pp 15–19

  • Neall, F.B., Phillips, G.N. (1987) Fluid-wall rock interaction in an Archean hydrothermal gold deposit: a thermodynamic model for the Hunt mine, Kambalda. Econ. Geol. 82:1679–1694

    Google Scholar 

  • Nesbitt, B.E., Murowchick, J.B., Muehlenbachs, K. (1986) Dual origins of lode gold deposits in the Canadian Cordillera. Geol. 14:506–509

    Google Scholar 

  • Ohmoto, H. (1972) Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Econ. Geol. 67:551–578

    Google Scholar 

  • Ohmoto, H., Rye, R.O. (1979) Isotopes of sulfur and carbon. In: Barnes H.L. (ed.) Geochemistry of hydrothermal ore deposits. Wiley, New York, pp. 509–567

    Google Scholar 

  • O'Neil, J.R., Silberman, M.L. (1974) Stable isotope relations in epithermal Au-Ag deposits. Econ. Geol. 69: 902–909

    Google Scholar 

  • Potter, R.W., III (1977) Pressure corrections for fluid-inclusion homogenization temperatures based on the volumetric properties of the system NaCl-H2O. US Geol. Surv. J. Res. 5:603–607

    Google Scholar 

  • Potter, R.W., III, Clynne, M.A., Brown, D.L. (1978) Freezing point depression of aqueous sodium chloride solutions. Econ. Geol. 73:284–285

    Google Scholar 

  • Robie, R.A., Waldbaum, D.R. (1968) Thermodynamic properties of minerals and related substances at 298.15°K (25.0°C) and one atmosphere (1.013 bars) pressure and at higher temperatures. US Geol. Surv. Bull. 1259:1–256

    Google Scholar 

  • Robinson, R.W., Norman, D.I. (1984) Mineralogy and fluid inclusion study of the southern amethyst vein system, Creede mining district, Colorado. Econ. Geol. 79:439–447

    Google Scholar 

  • Roedder, E. (1984) Fluid-inclusion evidence bearing on the environments of gold deposition. In: Foster R.P. (ed.) Gold 82. Balkema, Rotterdam, pp. 129–163

    Google Scholar 

  • Rye, D.M., Rye, R.O. (1974) Homestake gold mine, South Dakota: I. Stable isotope studies. Econ. Geol. 69:293–317

    Google Scholar 

  • Rye, R.O. (1966) The carbon, hydrogen, and oxygen isotopic compositions of hydrothermal fluids responsible for the lead-zinc deposits at Providencia, Zacatecas, Mexico. Econ. Geol. 61:1339–1427

    Google Scholar 

  • Seward, T.M. (1973) Thio-complexes of gold and the transport of gold in hydrothermal ore solutions: Geochim. Cosmochim. Acta 37:379–399

    Google Scholar 

  • Seward, T.M. (1989) The transport and deposition of gold in hydrothermal systems, In: Foster R.P. (ed.) Gold ′84 Balkema, Rotterdam, pp. 165–181

    Google Scholar 

  • Shelton, K.L. (1983) Composition and origin of ore-forming fluids in a carbonate-hosted porphyry copper and skarn deposit: a fluid inclusion and stable isotopic study of Mines Gaspe, Quebec. Econ. Geol. 78:387–421

    Google Scholar 

  • Shelton, K.L., So, C.S., Chang, J.S. (1988) Gold-rich mesothermal vein deposits of the Republic of Korea: geochemical studies of the Jungwon gold area. Econ. Geol. 83:1221–1237

    Google Scholar 

  • Shelton, K.L., So, C.S., Haeussler, G.T., Lee, K.Y., Chi, S.J. (1990) Geochemical studies of the Tongyoung gold-silver deposits, Republic of Korea: evidence of meteoric water dominance in a Te-bearing epithermal system. Econ. Geol. 85:1114–1132

    Google Scholar 

  • Shikazono, N. (1985) A comparison of temperatures estimated from the electrum-sphalerite-pyrite-argentite assemblage and filling temperatures of fluid inclusions from epithermal Au-Ag vein-type deposits in Japan. Econ. Geol. 80:1415–1424

    Google Scholar 

  • Shikazono, N., Shimizu, M. (1986) Compositional variations in Au-Ag series minerals from some gold deposits in the Korean peninsula. Mining Geol. 36:545–553

    Google Scholar 

  • Shimazaki, H., Lee, M.S., Tsusue, A., Kaneda, H (1986) Three epochs of gold mineralization in South Korea. Mining Geol. 36:265–272

    Google Scholar 

  • Shimazaki, H., Sato, K., Chon, H.T. (1981) Mineralization associated with Mesozoic felsic magmatism in Japan and Korea. Mining Geol. 31:297–310

    Google Scholar 

  • So, C.S., Shelton, K.L. (1987a) Stable isotope and fluid inclusion studies of gold-and silver-bearing hydrothermal vein deposits, Cheonan-Cheongyang-Nonsan mining district, Republic of Korea: Cheonan area. Econ. Geol. 82:987–1000

    Google Scholar 

  • So, C.S., Shelton, K.L. (1987b) Fluid inclusion and stable isotope studies of gold-silver-bearing hydrothermal vein deposits, Yeoju mining district, Republic of Korea. Econ. Geol. 82:1309–1318

    Google Scholar 

  • So, C.S., Chi, S.J., Shelton, K.L. (1987) Stable isotope and fluid inclusion studies of gold-silver-bearing vein deposits, Cheonan-Cheongyang-Nonsan mining district, Republic of Korea: Nonsan area. Neues Jahrb. Mineral. Abh. 158:47–65

    Google Scholar 

  • So, C.S., Yun, S.T., Chi, S.J., Choi, S.H. (1990) Geochemical studies of hydrothermal gold-silver deposits, Republic of Korea: Chilgok area. Neues Jahrb. Miner. Abh. 161:79–99

    Google Scholar 

  • Taylor, H.P., Jr. (1973) 18O/16O evidence for meteoric-hydrothermal alteration and ore deposition in Tonopah, Comstock Lode, and Goldfield mining districts, Nevada. Econ. Geol. 68:747–764

    Google Scholar 

  • Tsuchida, T. (1944) Ore Deposits in Korea (Japanese). Kasumigaseki, Tokyo, 329p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yun, ST., So, CS., Choi, SH. et al. Genetic environment of germanium-bearing gold-silver vein ores from the Wolyu mine, Republic of Korea. Mineral. Deposita 28, 107–121 (1993). https://doi.org/10.1007/BF00196335

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00196335

Keywords

Navigation