Skip to main content
Log in

DNA-DNA hybridization phylogeny of sand dollars and highly reproducible extent of hybridization values

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

A DNA hybridization phylogeny of four sand dollars using a sea biscuit as an outgroup is presented. The study is unusual in that the normalized percent hybridization (NPH) values were all <50%, yet the same topology was obtained regardless of which distance metric was used, i.e., whether reciprocal distances were averaged or not, or whether or not a molecular clock was assumed. The tree also appears robust under jackknifing and bootstrapping. The extent of hybridization between homologous hybrids was measured with a five- to sevenfold higher precision than is typical, and by implication NPH was also measured with a higher than normal precision. The ability to measure highly reproducible NPH values offers the possibility of examining the phylogeny of more widely divergent species than typically studied using DNA hybridization techniques, using 1/NPH as a distance metric. The hypothesis of a molecular clock within the sand dollars was rejected, adding sand dollars to the growing list of groups where significant rate variation is known. A small fraction of the sand dollar genomes hybridized with the distantly related regular sea urchin Lytechinus. These slowly evolving sequences probably represent conserved exonic components of the genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali SM (1983) The paleogeographic distribution of Clypeaster (Echinoidea) during the Cenozoic Era. Neues Jahrb Geol Palaeontol Monatsh 1983(8):449–464

    Google Scholar 

  • Angerer RC, Davidson EH, Britten RJ (1976) Single copy DNA and structural gene sequence relationships among four sea urchin species. Chromosoma 56:213–226

    Google Scholar 

  • Benveniste RE (1985) The contribution of retroviruses to the study of mammalian evolution. In: Maclntyre RJ (ed) Molecular evolutionary genetics. Plenum, New York, pp 359–417

    Google Scholar 

  • Benveniste RE, Todaro GJ (1974) Evolution of type C viral genes: I. Nucleic acid from baboon type C virus as a measure of divergence among primate species. Proc Natl Acad Sci USA 71:4513–4518

    Google Scholar 

  • Benveniste RE, Todaro GJ (1976) Evolution of type C viral genes: evidence for an Asian origin of man. Nature 261:101–108

    Google Scholar 

  • Benveniste RE, Callahan R, Sherr CJ, Chapman V, Todaro GJ (1977) Two distinct endogenous type C viruses isolated from the Asian rodent Mus cervicolor: conservation of virogene sequences in related rodent species. J. Viro 21:849–862

    Google Scholar 

  • Bledsoe AH (1987a) DNA evolutionary rates in nine-primaried passerine birds. Mol Biol Evol 4:559–571

    Google Scholar 

  • Bledsoe AH (1987b) Estimation of phylogeny from molecular distance data: the issue of variable rates. Auk 104:563–565

    Google Scholar 

  • Bledsoe AH, Sheldon FH (1989) The metric properties of DNA-DNA hybridization dissimilarity measures. Syst Zool 38:93–105

    Google Scholar 

  • Bledsoe AH, Sheldon FH (1990) Molecular homology and DNA hybridization. J Mol Evol 30:425–433

    Google Scholar 

  • Bonner TI, Brenner DJ, Todaro GJ (1980) Evolution of DNA sequences has been retarded in Malagasy primates. Nature 286:420–423

    Google Scholar 

  • Britten RJ (1989) Comment on a criticism of DNA hybridization measurements. J Hum Evol 18:163–164

    Google Scholar 

  • Britten RJ (1990) Comment on DNA hybridization issues raised at Lake Arrowhead. J Mol Evol 30:193–195

    Google Scholar 

  • Britten RJ, Kohne DE (1968) Repeated sequences in DNA. Science 161:529–540

    Google Scholar 

  • Britten RJ, Graham DE, Neufeld BR (1974) Analysis of repeating DNA sequences by reassociation. In: Grossman L, Moldave K (eds) Methods in enzymology, vol 29E. Academic Press, New York, pp 363–418

    Google Scholar 

  • Britten RJ, Cetta A, Davidson EH (1978) The single-copy DNA sequence polymorphism of the sea urchin Strongylocentrotus purpuratus. Cell 15:1175–1186

    Google Scholar 

  • Caccone A, Powell JR (1987) Molecular evolutionary divergence among North American cave crickets. II. DNA-DNA hybridization. Evolution 41:1215–1238

    Google Scholar 

  • Caccone A, Powell JR (1989) DNA divergence among hominoids. Evolution 43:925–942

    Google Scholar 

  • Caccone A, Powell JR (1990) Extreme rates and heterogeneity in insect DNA evolution. J Mol Evol 30:273–280

    Google Scholar 

  • Caccone A, DeSalle R, Powell JR (1988) Calibration of the change in thermal stability of DNA duplexes and degree of base pair mismatch. J Mol Evol 27:212–216

    Google Scholar 

  • Cavalli-Sforza LL, Edwards AFW (1967) Phylogenetic analysis: models and estimation procedures. Evolution 32:550–570

    Google Scholar 

  • Cracraft J (1987) DNA hybridization and avian phylogenetics. In: Hecht MK, Wallace B, Prance GT (eds) Evolutionary biology, vol 21. Plenum, New York, pp 47–96

    Google Scholar 

  • Cunningham CW, Buss LW, Anderson C (1991) Molecular and geologic evidence of shared history between hermit crabs and the symbiotic genus Hydractinia. Evolution 45:1301–1315

    Google Scholar 

  • Diamond JM (1990) The future of DNA-DNA hybridization studies. J Mol Evol 30:196–201

    Google Scholar 

  • Durham JW (1955) Classification of clypeasteroid echinoids. Univ Calif Publ Geol Sci 31:73–198

    Google Scholar 

  • Durham JW (1966) Clypeasteroids. In: Moore RC (ed) Treatise on invertebrate paleontology: Echinodermata, vol U3(2). University of Kansas, Lawrence, pp 450–491

    Google Scholar 

  • Felsenstein J (1984) Distance methods for inferring phylogenies: a justification. Evolution 38:16–24

    Google Scholar 

  • Felsenstein J (1986) Distance methods: a reply to Farris. Cladistics 2:130–143

    Google Scholar 

  • Felsenstein J (1987) Estimation of hominoid phylogeny from a DNA hybridization data set. J Mol Evol 26:123–131

    Google Scholar 

  • Felsenstein J (1988) PHYLIP version 3.1, available from Dr J Felsenstein. Department of Genetics, University of Washington, Seattle

    Google Scholar 

  • Fitch WM, Margoliash E (1967) Construction of phylogenetic trees. Science 155:279–284

    Google Scholar 

  • Grula JW, Hall TJ, Hunt JA, Giugni TD, Graham GJ, Davidson EH, Britten RJ (1982) Sea urchin DNA sequence variation and reduced interspecies differences of the less variable DNA sequences. Evolution 36:665–676

    Google Scholar 

  • Hall TJ, Grula JW, Davidson EH, Britten RJ (1980) Evolution of sea urchin non-repetitive DNA. J Mol Evol 16:95–110

    Google Scholar 

  • Harold AS, Telford M (1990) Systematics, phylogeny and biogeography of the genus Mellita (Echinodea: Clypeasteroida) J Nat Hist 24:987–1026

    Google Scholar 

  • Hinegardner R (1974) Cellular DNA content of the Echinodermata. Comp Biochem Physiol 49B:219–226

    Google Scholar 

  • Houde P (1987a) Critical evaluation of DNA hybridization studies in avian systematics. Auk 104:17–32

    Google Scholar 

  • Houde P (1987b) Response to AH Bledsoe and JE Ahlquist et al. Auk 104:566–568

    Google Scholar 

  • Hoyer BH, McCarthy BJ, Bolton ET (1964) A molecular approach in the systematics of higher organisms. Science 144: 959–967

    Google Scholar 

  • Hunt JA, Hall TJ, Britten RJ (1981) Evolutionary distances in Hawaiian Drosophila measured by DNA reassociation. J Mol Evol 17:361–367

    Google Scholar 

  • Jensen M (1981) Morphology and classification of Euechinoidea Bronn, 1860—a cladistic analysis. Vidensk Medd Dan naturhist Foren 143:7–99

    Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munroe HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–132

    Google Scholar 

  • Krajewski C (1989) Phylogenetic relationships among cranes (Gruiformes: Gruidae) based on DNA hybridization. Auk 106:603–618

    Google Scholar 

  • Krajewski C, Dickerman AW (1990) Bootstrap analysis of phylogenetic trees derived from DNA hybridization distances. Syst Zool 39:383–390

    Google Scholar 

  • Kwiatowski J, Gonzalez F, Ayala FJ (1989) Drosophila simulans Cu-Zn superoxide dismutase gene sequence. Nucleic Acids Res 17:6735

    Google Scholar 

  • Lanyon SM (1985) Detecting internal inconsistencies in distance data. Syst Zool 34:397–403

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor NY

    Google Scholar 

  • Marks J, Schmid CW, Sarich VM (1988) DNA hybridization as a guide to phylogeny: relations of the Hominoidea. J Hum Evol 17:769–786

    Google Scholar 

  • Marks J, Schmid CW, Sarich VM (1989) Response to Britten. J Hum Evol 18:165–166

    Google Scholar 

  • Marshall CR (1988) DNA-DNA hybridization, the fossil record, phylogenetic reconstruction, and the evolution of the clypeasteroid echinoids. In: Paul CRC, Smith AB (eds) Echinoderm phylogeny and evolutionary biology. Clarendon Press, Oxford, pp 107–119

    Google Scholar 

  • Marshall CR (1989) DNA-DNA hybridization, morphology and the fossil record of sand dollars (Echinodermata: Clypeasteroida): phylogeny and rates of single-copy DNA evolution. PhD dissertation, University of Chicago, Chicago

    Google Scholar 

  • Marshall CR (1991) Statistical tests and bootstrapping: assessing the reliability of phylogenies derived from distance data. Mol Biol Evol 8:386–391

    Google Scholar 

  • Marshall CR (1992) Character analysis and the integration of molecular and morphological data in an understanding of sand dollar phylogeny. Mol Biol Evol (in press)

  • McCarthy BJ, Farquhar MN (1972) The rate of change of DNA in evolution. In: Smith HH (ed) Evolution of genetic systems. Gordon and Breach, New York, pp 1–43

    Google Scholar 

  • Mooi RJ (1987) A cladistic analysis of the sand dollars (Clypeasteroida: Scutellina) and the interpretation of heterochronic phenomena. Phd dissertation, University of Toronto, Toronto, Canada

    Google Scholar 

  • Powell JR, Caccone A (1989) Intraspecific and interspecific genetic variation in Drosophila. Genome 31:233–238

    Google Scholar 

  • Powell JR, Caccone A (1990) The TEACL method of DNA-DNA hybridization: technical considerations. J Mol Evol 30: 267–272

    Google Scholar 

  • Roberts JW, Johnson SA, Kier PK, Hall TJ, Davidson EH, Britten RJ (1985) Evolutionary conservation of DNA sequences expressed in sea urchin eggs and early embryos. J Mol Evol 22:99–107

    Google Scholar 

  • Rohlf FJ, Sokal RR (1981) Comparing numerical taxonomic studies. Syst Zool 30:459–490

    Google Scholar 

  • Sarich VM, Schmid CW, Marks J (1989) DNA hybridization as a guide to phylogenies: a critical analysis. Cladistics 5:3–32

    Google Scholar 

  • Schmid CW, Marks J (1990) DNA hybridization as a guide to phylogeny: chemical and physical limits. J Mol Evol 30:237–246

    Google Scholar 

  • Schulze DH, Lee CS (1986) DNA sequence comparison among closely related Drosophila species of the mulleri complex. Genetics 113:287–303

    Google Scholar 

  • Seilacher A (1979) Constructional morphology of sand dollars. Paleobiology 5:191–221

    Google Scholar 

  • Sharp PM, Li W-H (1989) On the rate of DNA sequence evolution in Drosophila. J Mol Evol 28:398–402

    Google Scholar 

  • Sheldon FH (1987) Rates of single-copy DNA evolution in herons. Mol Biol Evol 4:56–69

    Google Scholar 

  • Sheldon FH, Bledsoe AH (1989) Indexes to the reassociation and stability of solution DNA hybrids. J Mol Evol 29:328–343

    Google Scholar 

  • Sibley CG, Ahlquist JE (1984) The phylogeny of the hominoid primates, as indicated by DNA-DNA hybridization. J Mol Evol 20:2–15

    Google Scholar 

  • Sibley CG, Ahlquist JE (1987) DNA hybridization evidence of hominoid phylogeny: results from an expanded data set. J Mol Evol 26:99–121

    Google Scholar 

  • Sibley CG, Ahlquist JE, Sheldon FH (1987) DNA hybridization and avian phylogenetics. Reply to Cracraft. In: Hecht MK, Wallace B, Prance GT (eds) Evolutionary biology, vol 21. Plenum, New York, pp 97–125

    Google Scholar 

  • Sibley CG, Comstock JA, Ahlquist JE (1990) DNA hybridization evidence of hominoid phylogeny: a reanalysis of the data. J Mol Evol 30:202–236

    Google Scholar 

  • Smith AB (1984) Echinoid paleobiology. George Allen and Unwin, London

    Google Scholar 

  • Smith MJ, Nicholson R, Stuerzl M, Lui A (1982) Single copy DNA homology in sea stars. J Mol Evol 18:92–101

    Google Scholar 

  • Springer MS, Kirsch JAW (1989) Rates of single-copy DNA evolution in phalangeriform marsupials. Mol Biol Evol 6: 331–341

    Google Scholar 

  • Springer M, Krajewski C (1989a) DNA hybridization in animal taxonomy: a critique from first principles. Q Rev Biol 64: 291–318

    Google Scholar 

  • Springer M, Krajewski C (1989b) Additive distances, rate variation, and the perfect-fit theorem. Syst Zool 38:371–375

    Google Scholar 

  • Springer MS, Krisch JAW, Alpin K, Flannery T (1990) DNA hybridization, cladistics, and the phylogeny of phalangerid marsupials. J Mol Evol 30:298–311

    Google Scholar 

  • Werman SD, Springer MS, Britten RJ (1990a) Nucleic acids I: DNA-DNA hybridization. In: Hillis DM, Moritz C (eds) Molecular systematics. Sinauer, Sunderland MA, pp 204–249

    Google Scholar 

  • Werman SD, Davidson EH, Britten RJ (1990b) Rapid evolution in a fraction of the Drosophila nuclear genome. J Mol Evol 30:281–289

    Google Scholar 

  • Yanagisawa T (1988) Base sequence complexity of sea urchin DNA. In: Burke RD, Mladenov PV, Lambert P, Parsley RL (eds) Echinodermata biology. Proceedings of the 6th International Echinoderm Conference, Galway. AA Balkema, Rotterdam, pp 297–298

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Offprint requests to: C.R. Marshall

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marshall, C.R., Swift, H. DNA-DNA hybridization phylogeny of sand dollars and highly reproducible extent of hybridization values. J Mol Evol 34, 31–44 (1992). https://doi.org/10.1007/BF00163850

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00163850

Key words

Navigation