Skip to main content
Log in

Evidence for retrotranscription of protein-coding genes in the Drosophila subobscura genome

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

Evidence is provided for the presence of retrosequences (also named retroposons) arising from Adh in the Drosophila subobscura genome. Restriction analysis and primary structure of two different retrosequence-containing clones, S812 and S135, are reported. The fact that these retrosequences lack introns and a recognizable promoter strongly supports their retrotranscriptional origin. Adjacent to the two retrosequences analyzed, a middle repetitive DNA element has been found which bears no clear similarity to any sequence reported to date in the GenBank/EMBL Data Library. A comparative analysis of these retrosequences with the functional Adh gene of D. subobscura is presented. In addition, a model concerning the origin, functionality, and propagation of these genome elements is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashworth A, Skene B, Swift S, Lovell-Badge R (1990) Zfa is an expressed retroposon derived from an alternate transcript of the Zfx gene. EMBO J 9: 1529–1534

    Google Scholar 

  • Boer PH, Adra CN, Lau Y-F, McBurney MW (1987) The testis-specific phosphoglycerate kinase gene pgk-2 is a recruited retroposon. Mol Cell Biol 7 (9): 3107–3112

    Google Scholar 

  • Caccone A, Powell JR (1990) Extreme rates and heterogeneity in insect DNA evolution. J Mol Evol 30: 273–280

    Google Scholar 

  • Chambers GK (1988) The Drosophila alcohol dehydrogenase gene-enzyme system. In: Caspar EW and Scandalios JG (eds) Advances in genetics, vol 25. Academic Press, New York, pp 39–107

    Google Scholar 

  • Deininger PL, Daniels GR (1986) The recent evolution of mammalian repetitive DNA elements. T I G 2 (3): 76–80

    Google Scholar 

  • Devereux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12: 387–395

    Google Scholar 

  • DiNocera PP, Digan ME, Dawid IB (1983) A family of oligoadenylated transposable sequences in Drosophila melanogaster. J Mol Biol 168: 715–727

    Google Scholar 

  • Eickbush TH, Robins B (1985) Bombyx mori 28S ribosomal genes contain insertion elements similar to the Type I and II elements of Drosophila melanogaster. EMBO J 4: 2281–2285

    Google Scholar 

  • Felger I, Sperlich D (1989) Cytological localization and organization of dispersed middle repetitive DNA sequences of Drosophila subobscura. Chromosoma 98: 342–350

    Google Scholar 

  • Finnegan DF (1989) F and related elements in Drosophila melanogaster. In: Berg DE and Howe MM (ed) Mobile DNA. American Society for Microbiology, Washington, DC, pp 517–519

    Google Scholar 

  • Goldberg DA (1980) Isolation and partial characterization of the Drosophila alcohol dehydrogenase gene. Proc Natl Acad Sci USA 77: 5795–5798

    Google Scholar 

  • Henikoff S (1984) Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene 28: 351–359

    Google Scholar 

  • Hernández JJ, Vilageliu LL, González-Duarte R (1988) Functional and biochemical features of alcohol dehydrogenase in four species of the obscura group of Drosophila. Genetica 77: 15–24

    Google Scholar 

  • Holmquist R, Cantor C, Jukes T (1972) Improved procedures for comparing homologous sequences in molecules of protein and nucleic acids. J Mol Biol 64: 145–161

    Google Scholar 

  • Hull R, Will H (1989) Molecular biology of viral and nonviral retroelements. T I G 5 (11): 357–359

    Google Scholar 

  • Jeffs PS, Ashburner M (1991) Processed pseudogenes in Drosophila. Proc R Soc London B 244: 151–159

    Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism, vol 3. Academic Press, New York, pp 21–132

    Google Scholar 

  • Li D, Johnson LF (1989) A mouse thymidilate synthase pseudogene derived from an aberrantly processed RNA molecule. Gene 82: 363–370

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: A laboratory manual, ed 1. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Marfany G, Gonzàlez-Duarte R (1991) The Adh genomic region of Drosophila ambigua: evolutionary trends in different species. J Mol Evol 32: 454–462

    Google Scholar 

  • Marfany G, Gonzàlez-Duarte R (1992) The Drosophila subobscura Adh genomic region contains valuable evolutionary markers. Mol Biol Evol 9: 261–277

    Google Scholar 

  • Martin G, Wiernasz D, Schedl P (1983) Evolution of Drosophila repetitive-dispersed DNA. J Mol Evol 19: 203–213

    Google Scholar 

  • Miyata T, Yasunaga T (1981) Rapidly evolving mouse α-globin-related pseudogene and its evolutionary history. Proc Natl Acad Sci USA 78: 453–5450

    Google Scholar 

  • Perler F, Efstratiadis A, Lomedico P, Gilbert W, Kolodner R, Dodgson J (1980) The evolution of genes: the chicken pre-proinsulin gene. Cell 20: 555–566

    Google Scholar 

  • Pinsker W, Sperlich D (1984) Cytogenetic mapping of enzyme loci on chromosomes J and U of Drosophila subobscura. Genetics 108: 913–926

    Google Scholar 

  • Rogers JH (1983) Retroposons defined. Nature 301: 460

    Google Scholar 

  • Rogers JH (1985) The origin and evolution of retroposons. Int Rev Cytol 93: 187–279

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467

    Google Scholar 

  • Schaeffer SW, Aquadro CF (1987) Nucleotide sequence of the Adh region of Drosophila pseudoobscura: evolutionary changes and evidence for an ancient duplication. Genetics 117: 61–73

    Google Scholar 

  • Sharp PM, Li W-H (1989) On the rate of DNA sequence evolution in Drosophila. J Mol Evol 28: 398–402

    Google Scholar 

  • Soares M, Schon E, Henderson A, Karathanasis SK, Cate R, Zeitlin S, Chirgwin J, Efstratiadis A (1985) RNA-mediated gene duplication: the rat preproinsulin I gene is a functional retroposon. Mol Cell Biol 5 (8): 2090–2103

    Google Scholar 

  • Sofer W, Martin PF (1987) Analysis of alcohol dehydrogenase gene expression in Drosophila. Ann Rev Genet 21: 203–225

    Google Scholar 

  • Stein JP, Munjaal RP, Lagace L, Lai EC, O'Malley BW, Means AR (1983) Tissue-specific expression of a chicken calmodulin pseudogene lacking intervening sequences. Proc Natl Acad Sci USA 80: 6485–6489

    Google Scholar 

  • Sullivan DT, Atkinson PW, Starmer WT (1990) Molecular evolution of the alcohol dehydrogenase gene in the genus Drosophila. In: Hecht MK, Wallace B, MacIntyre RJ (ed) Evolutionary biology. Plenum, New York, pp 107–147

    Google Scholar 

  • Temin HM (1989) Retrons in bacteria. Nature 339: 254–255

    Google Scholar 

  • Throckmorton L (1975) The phylogeny, ecology, and geography of Drosophila. In: King RC (ed) Handbook of genetics, vol 3. Plenum, New York, pp 421–469

    Google Scholar 

  • Vanin EF (1985) Processed pseudogenes: characteristics and evolution. Ann Rev Genet 19: 253–272

    Google Scholar 

  • Visa N, Marfany G, Vilageliu LI, Albalat R, Atrian S, González-Duarte R (1991) The Adh in Drosophila: chromosomal location and restriction analysis in species with different phylogenetic relationships. Chromosoma 100: 315–322

    Google Scholar 

  • Visa N, Fibla J, González-Duarte R, Santa-Cruz MC (1992) Progressive distribution of alcohol dehydrogenase during vitellogenesis in Drosophila melanogoster: characterization of ADH-positive bodies in mature oocytes. Cell Tissue Res 268: 217–224

    Google Scholar 

  • Wagner M (1986) A consideration of the origin of processed pseudogenes. T I G 2 (5): 134–137

    Google Scholar 

  • Weiner AM, Deininger PL, Efstratiadis A (1986) Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Ann Rev Biochem 55: 631–661

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Offprint requests to: R. Gonzàlez

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marfany, G., Gonzàlez-Duarte, R. Evidence for retrotranscription of protein-coding genes in the Drosophila subobscura genome. J Mol Evol 35, 492–501 (1992). https://doi.org/10.1007/BF00160210

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00160210

Key words

Navigation