Skip to main content
Log in

Comparison of suspended and immobilized yeast metabolism using 31P nuclear magnetic resonance spectroscopy

  • Published:
Biotechnology Techniques

Summary

31P nuclear magnetic resonance has been employed to monitor noninvasively Saccharomyces cerevisiae anaerobic glucose metabolism in suspended and immobilized cells. Results show that cell entrapment in Ca-alginate beads alters cell metabolism compared to that in suspended cells. Assuming similar intracellular ionic strength, differences in intracellular phosphate chemical shift indicate that the internal pH of the immobilized cells is lower than the suspended cell internal pH. This result is consistent with higher ethanol production rates exhibited by immobilized yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailey J. E. and Ollis D. F. (1986) In: Biochemical Engineering Fundamentals 2nd. Ed.. McGraw-Hill, pp. 212–220.

  • Banuelos M., Gancedo C., and Gancedo J. (1977). J. Biol. Chem. 252, 6394–6398.

    Google Scholar 

  • Chotani G. and Constantinides A. (1984). Biotechn. Bioeng. 26, 217–220.

    Google Scholar 

  • den Hollander J. A., Ugurbil K., Brown T. R., and Shulman R. G. (1981). Biochemistry 20, 5871–5880.

    Google Scholar 

  • den Hollander, J. A., Ugurbil K., Brown T. R., Bednar M., Redfield C., and Shulman R. G. (1986). Biochemistry 25, 203–211.

    Google Scholar 

  • Doran P. and Bailey J. E. (1986). Biotechn. Bioeng. 28, 73–87.

    Google Scholar 

  • Foxall D. L. and Cohen J. S. (1983). J. Mag. Res. 52, 346–349.

    Google Scholar 

  • Karczmar G. S., Koretsky A. P., Bissell M. J., Klein M. P., and Weiner M. W. (1983). J. Mag. Res. 53, 123–128.

    Google Scholar 

  • Kosow D. and Rose I. (1971). J. Biol. Chem. 246, 2618–2625.

    Google Scholar 

  • Laurent M. and Seydoux F. (1977). Bioch. Biophys. Res. Comm. 78, 1289–1295.

    Google Scholar 

  • McGhee J. E., St.Julian G., and Detroy R. W. (1982). Appl. Envirom. Microbiol. 44, 19–24.

    Google Scholar 

  • Navon G., Shulman R., Yamane T., Eccleshall T., Lam K., Baronotsky J., and Marmur J. (1979). Biochemistry 18, 4487–4499.

    Google Scholar 

  • Nicolay K., Scheffers W. A., Bruinenberg P. M., and Kaptein R. (1982). Arch. Microbiol. 133, 83–89.

    Google Scholar 

  • Salhany J., Yamane T., Shulman R., and Ogawa S. (1975). Proc. Natl. Acad. Sci. USA 72, 4966–4970.

    Google Scholar 

  • Shanks J. V. and Bailey J. E. (1986). in preparation.

  • Sitton D. and Gaddy J. (1980). Biotechn. Bioeng. 22, 1735–1748.

    Google Scholar 

  • Tyagi R. and Ghose T. (1982). Biotechn. Bioeng. 24, 781–795.

    Google Scholar 

  • Wilkinson K. and Rose I. (1979). J. Biol. Chem. 254, 12567–12572.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galazzo, J.L., Shanks, J.V. & Bailey, J.E. Comparison of suspended and immobilized yeast metabolism using 31P nuclear magnetic resonance spectroscopy. Biotechnol Tech 1, 1–6 (1987). https://doi.org/10.1007/BF00156277

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00156277

Keywords

Navigation