Skip to main content
Log in

Differentiation of membrane systems during development of slow and fast skeletal muscle fibres in chicken

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

The disposition of transverse (T) tubules, sarcoplasmic reticulum (SR) and T-SR junctions (triads) and the width of Z lines are matched to contractile properties in adult muscle fibres. We have studied the development of the membrane systems in the slow anterior (ALD) and the fast posterior (PLD) latissimus dorsi of the chicken in ovo (E14–E21) and after hatching (D1–D30). T tubules, SR, triads and Z lines were visualized using DiIC16[3] labelling for confocal microscopy and either Ca-osmium-ferrocyanide or standard procedures for electron microscopy. Anterior latissimus dorsi and PLD have similar, slow twitches in early development (E14–E16), but PLD suddenly becomes faster starting at E17–E18. We find that in coincidence with the differentiation of faster contraction properties (starting at E18–E19) density of triads is significantly higher and width of Z lines is narrower in PLD. The SR also begins to acquire fibre-type specific characteristics at this time. Early development of T tubules, on the other hand, is quite similar in the two muscles. Peripherally-located, longitudinally-oriented T tubules, and the first T networks crossing the fibre center appear earlier in ALD (E14–E15 and E16) than in PLD (E14–E16 and E17), but have similar dispositions. The final fibre-type specific distribution of T tubules is achieved after hatching. Some T tubules-rich fibres in the ALD, presumably future fast fibres, develop extensive T tubule networks at early stages. Location of triads at the Z line in pectoralis occurs in three steps: an initial location of longitudinally oriented triads at the A-I junction; a subsequent move to the Z lines and finally a rotation to a transverse orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AKSTER, H. A., GRANZIER, H. L. M. & TER KEURS, H. E. D. J. (1985) A comparison of quantitative ultrastructural and contractile characteristics of muscle fibre type of the perch, Perca fluviatilis L. J. Comp. Physiol. (B) 155, 685–91.

    Google Scholar 

  • APPELT, D., BUENVIAJE, B., CHAMP, C. & FRANZINI-ARMSTRONG, C. (1989) Quantitation of ‘junctional feet’ content in two types of muscle fiber from hind limb muscles of the rat. Tissue and Cell 21, 783–94.

    Google Scholar 

  • APPELT, D., SHEN, V. & FRANZINI-ARMSTRONG, C. (1991) Quantitation of Ca ATPase, feet and mitochondria in superfast muscle fibres from the toadfish, Opsanus tau. J. Muscle Res. Cell Motil. 12, 543–52.

    Google Scholar 

  • ARNDT, I. & PEPE, F. A. (1975) Antigen specificity of red and white muscle myosin. J. Histochem. Cytochem. 23, 159–68.

    Google Scholar 

  • BANDMAN, E. & BENNETT, T. (1988) Diversity of fast myosin heavy chain expression during development of gastrocnemius, bicep brachii, and posterior latissimus dorsi muscles in normal and dystrophic chickens. Dev. Biol. 130, 220–31.

    Google Scholar 

  • BANDMAN, E., MATSUDA, R. & STROHMAN, R. C. (1982) Developmental appearance of myosin heavy and light chain isoforms in vivo and in vitro in chicken skeletal muscle. Dev. Biol. 93, 508–18.

    Google Scholar 

  • BAUMANN, O., KITAZAWA, T. & SOMLYO, A. P. (1990). Laser confocal scanning microscopy of the surface membrane/T-tubular system and the sarcoplasmic reticulum in insect striated muscle stained with DiIC18 (3). J. Structural Biol. 105, 154–61.

    Google Scholar 

  • BRAY, D. F. & RAYNS, D. G. (1976) A comparative freeze-etch study of the sarcoplasmic reticulum of avian fast and slow muscle fibres. J. Ultrastruct. Res. 57, 251–62.

    Google Scholar 

  • BUTLER, J. & COSMOS, E. (1981) Differentiation of the avian latissimus dorsi primordium: analysis of fiber type expression using the myosin ATPase histochemical reaction. J. Exp. Zool. 218, 219–32.

    Google Scholar 

  • BUTLER, J., COSMOS, E. & BRIERLEY, J. (1982) Differentiation of muscle fiber types in aneurogenic brachial muscles of the chick embryo. J. Exp. Zool. 224, 65–80.

    Google Scholar 

  • CLOSE, R. (1972) Dynamic properties of mammalian skeletal muscle. Physiol. Rev. 52, 129–97.

    Google Scholar 

  • COSTANTIN, L. L., PODOLSKY, R. J. & TICE, L. W. (1967) Calcium activation of frog slow muscle fibres. J. Physiol. 188, 261–71.

    Google Scholar 

  • DHOOT, G. K. (1988) Identification and distribution of the fast class of troponin T in the adult and developing avian skeletal muscle. J. Muscle Res. Cell Motil. 9, 446–55.

    Google Scholar 

  • EISENBERG, B. R. (1983) Quantitative ultrastructure of mammalian skeletal muscle. In Handbook of Physiology, Section 10, Skeletal Muscle (edited by PEACHEY, L. D., ADRIAN, R. H. & GEIGER, S. R.) pp. 73–112. Bethesda: American Physiological Society.

    Google Scholar 

  • EISENBERG, B. R., DIX, D. J., LIN, Z. W. & WENDEROTH, M. P. (1987) Relationship of membrane systems in muscle to isomyosin content. Can. J. Physiol. Pharmacol. 65, 598–605.

    Google Scholar 

  • FORBES, M. S., PLANTHOLT, B. A. & SPERELAKIS, N. (1977) Cytochemical staining procedures selective for sarcotubular systems of muscle: modifications and applications. J. Ultrastruct. Res. 60, 306–27.

    Google Scholar 

  • FLUCHER, B. E., TAKEKURA, H. & FRANZINI-ARMSTRONG, C. (1993) Association of sarcoplasmic reticulum and transverse tubules with myofibrils in developing muscle fibers. Dev. Biol., in press.

  • FRANZINI-ARMSTRONG, C. (1986) The sarcoplasmic reticulum and the transverse tubules. In Myology (Edited by ENGEL, A. G. & BANKER, B. Q.) pp. 125–54. New York: McGraw-Hill Book Co.

    Google Scholar 

  • FRANZINI-ARMSTRONG, C. (1991) Simultaneous maturation of transverse tubules and sarcoplasmic reticulum during muscle differentiation in the mouse. Develop. Biol. 146, 353–63.

    Google Scholar 

  • FRANZINI-ARMSTRONG, C., GILLY, W. F., ALADJEM, E. & APPELT, D. (1987) Golgi stain identifies three types of fibres in fish muscle. J. Muscle Res. Cell Motil. 8, 418–27.

    Google Scholar 

  • FRANZINI-ARMSTRONG, C., FERGUSON, D. G. & CHAMP, C. (1988) Discrimination between fast and slow twitch fibres in guinea pig skeletal muscle using the relative surface density of junctional transverse tubule membrane. J. Muscle Res. Cell Motil. 9, 403–14.

    Google Scholar 

  • GARDAHAUT, M.-F., ROUAUD, T., RENAUD, D. & LEDOUARIN, G. (1988) Developmental changes in myosin isoforms from slow and fast latissimus dorsi muscles in the chicken. Differentiation 37, 81–5.

    Google Scholar 

  • GAUTHIER, G. F. & HOBBS, A. W. (1986) Freeze-fractured sarcoplasmic reticulum in adult and embryonic fast and slow muscles. J. Muscle Res. Cell Motil. 7, 122–32.

    Google Scholar 

  • GAUTHIER, G. F. & LOWEY, S. (1977) Polymorphism of myosin among skeletal muscle fiber types. J. Cell Biol. 74, 760–79.

    Google Scholar 

  • GINSBORG, B. C. (1960) Some properties of avian skeletal muscle fibres with multiple neuromuscular junctions. J. Physiol. 154, 581–98.

    Google Scholar 

  • GORDON, T. & VRBOVA, G. (1975) The influence of innervation on the differentiation of contractile speeds of developing chick muscles. Pflugers Arch. 360, 199–218.

    Google Scholar 

  • GORDON, T., PURVES, R. D. & VRBOVA, G. (1977) Differentiation of electrical and contractile properties of slow and fast muscle fibres. J. Physiol. 269, 535–47.

    Google Scholar 

  • KAPRIELIAN, Z. & FAMBROUGH, D. M. (1987) Expression of fast and slow isoforms of the Ca2+-ATPase in developing chick skeletal muscle. Dev. Biol. 124, 490–503.

    Google Scholar 

  • KIDD, P. M. & YASUMURA, T. (1982) T system abnormalities in differentiating skeletal fibers of dystrophic chickens. Muscle and Nerve 5, 471–8.

    Google Scholar 

  • MARTONOSI, A., ROUL, D., HA, B. & BOLAND, R. (1980) The biosynthesis of sarcoplasmic reticulum. Fed. Proc. 39, 2415–21.

    Google Scholar 

  • MCLENNAN, L. S. (1983) Differentiation of muscle fiber types in the chicken hindlimb. Dev. Biol. 97, 222–8.

    Google Scholar 

  • NUNZI, G. & FRANZINI-ARMSTRONG, C. (1980) Trabecular network in adult skeletal muscle. J. Ultrastruct. Res. 73, 21–6.

    Google Scholar 

  • OGATA, T. (1988) Morphological and cytochemical features of fiber types in vertebrate skeletal muscle. CRC Critical Rev. Anat. Cell Biol. 1, 229–75.

    Google Scholar 

  • PAGE, S. G. (1965) A comparison of the fine structure of frog slow and twitch fibers. J. Cell Biol. 26, 477–97.

    Google Scholar 

  • PAGE, S. G. (1969) Structure and some contractile properties of fast and slow muscle of the chicken. J. Physiol. 205, 131–45.

    Google Scholar 

  • PETTE, D., VRBOVA, G. & WHALES, R. C. (1979) Independent development of contractile properties and myosin light chains in embryonic chick fast and slow muscle. Pflugers Arch. 378, 251–7.

    Google Scholar 

  • REID, S. K., KENNEDY, J. M., SHIMIZU, N., STEWART, A., VRBOVA, G. & ZAK, R. (1989) Regulation of expression of avian slow myosin heavy-chain isoforms. Biochem. J. 260, 449–54.

    Google Scholar 

  • REISER, P. J. & STOKES, B. T. (1982) Development of contractile properties in avian embryonic skeletal muscle. Am. J. Physiol. 242 (Cell Physiol. 12), C52–8.

    Google Scholar 

  • REISER, P. J., STOKES, B. T. & RALL, J. A. (1982) Isometric contractile properties and velocity of shortening during avian myogenesis. Am. J. Physiol. 243 (Cell Physiol. 12), C177–83.

    Google Scholar 

  • REISER, P. J., GREASER, M. L. & MOSS, R. L. (1988) Myosin heavy chain composition of single cells from avian slow skeletal muscle is strongly correlated with velocity of shortening during development. Dev. Biol. 129, 400–7.

    Google Scholar 

  • REISER, P. J., GREASER, M. L. & MOSS, R. L. (1992) Developmental changes in troponin T isoform expression and tension production in chicken single skeletal muscle fibres. J. Physiol. 449, 573–88.

    Google Scholar 

  • RYAN, D. M. & SHAFIQ, S. A. (1980) A freeze-fracture of the anterior and posterior latissimus dorsi muscles of the chicken. Anat. Rec. 198, 147–61.

    Google Scholar 

  • SCHMALBRUCH, H. (1979) The membrane systems in different fibre types of the triceps surae of cat. Cell Tissue Res. 204, 187–200.

    Google Scholar 

  • SOMMER, J. R. & WAUGH, R. A. (1976) The ultrastructure of the mammalian cardiac muscle cell with special emphasis on the tubular membrane system. Am. J. Pathol. 82, 192–232.

    Google Scholar 

  • STOCKDALE, F. & MILLER, J. B. (1987) The cellular basis of myosin heavy chain isoform expression during development of avian skeletal muscles. Dev. Biol. 123, 1–9.

    Google Scholar 

  • WALKER, S. M., SCHRODT, G. R. & BINGHAM, M. (1969) Evidence for connections of the sarcoplasmic reticulum with the sarcolemma and with the Z line in skeletal muscle fibers of fetal and newborn rats. Am. J. Phys. Med. 48, 63–77.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takekura, H., Shuman, H. & Franzini-Armstrong, C. Differentiation of membrane systems during development of slow and fast skeletal muscle fibres in chicken. J Muscle Res Cell Motil 14, 633–645 (1993). https://doi.org/10.1007/BF00141560

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00141560

Keywords

Navigation