Skip to main content
Log in

Transition metal complexes with neutral and deprotonated malonamide

  • Full Papers
  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Summary

New complexes of the general formulae [M(LH2)2Cl2] (M = Mn, Fe, Co, Ni, Cu, Zn), [Mn(LH2)2X2] (X = Br, I), [Cu(LH2)2Br2], [Ni(LH2)2X2] (X = Br, NCS, ONO2), [Cu(LH2)X2]n (X = Cl, Br), K2[NiL2]·2H2O and K2-[CuL2]·H2O, where LH2 = malonamide, were isolated. The complexes were characterized by elemental analyses, X-ray powder patterns, magnetic susceptibilities and spectroscopic (variable-temperature 57Fe-Mössbauer, e.s.r., u.v.-vis., i.r., far-i.r., Raman) studies. Monomeric trans pseudo-octahedral stereochemistries for the neutral 1∶2 complexes and square planar structures of D 2h symmetry for the two ionic complexes are assigned in the solid state. Dimeric or polymeric five-coordinate structures are proposed for the 1∶1 copper(II) compounds. LH2 and L2− behave as bidentate chelating ligands binding through oxygen and deprotonated nitrogen atoms, respectively. A detailed comparison of the studied complexes with the corresponding oxamide complexes is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Soto, R. Martinez-Màñez, J. Payà, F. Lloret and M. Julve, Transition Met. Chem., 18, 69 (1993) and references therein.

    Google Scholar 

  2. K. E. Gilmore and G. K. Pagenkoph, Inorg. Chem., 24, 2436 (1985).

    Google Scholar 

  3. O. Kahn, Y. Pei, K. Nakatani and Y. Journaux, New J. Chem., 16, 269 (1992) and references therein.

    Google Scholar 

  4. J. A. Real, M. Mollar, R. Ruiz, J. Faus, F. Lloret, M. Julve and M. Philoche-Levisalles, J. Chem. Soc., Dalton Trans., 1483 (1993) and references therein.

  5. Y. Pei, O. Kahn, K. Nakatani, E. Codjovi, C. Mathoniére and J. Sletten, J. Am. Chem. Soc., 113, 6558 (1991) and references therein.

    Google Scholar 

  6. J. J. Bour, P. J. M. W. L. Birker and J. J. Steggerda, Inorg. Chem., 10, 1202 (1971).

    Google Scholar 

  7. H. O. Desseyn, B. J. Van der Veken and M. A. Herman, Spectrochim. Acta, 33A, 633 (1977).

    Google Scholar 

  8. H. O. Desseyn, W. J. Van Riel and B. J. Van der Veken, Can. J. Spectrosc., 24, 98 (1979).

    Google Scholar 

  9. F. Quaeyhaegens, H. O. Desseyn, B. Bracke and A. T. H. Lenstra, J. Mol. Struct., 238, 139 (1990).

    Google Scholar 

  10. H. O. Desseyn in S. Patai (Ed.), The Chemistry of Acid Derivatives, Wiley, New York, 1992, Vol. 2, Chap. 7, pp. 271–303.

    Google Scholar 

  11. H. O. Desseyn, Pure Appl. Chem., 61, 867 (1989).

    Google Scholar 

  12. H. O. Desseyn, W. Van Riel, L. Van Haverbeke and A. Goeminne, Transition Met. Chem., 5, 88 (1980).

    Google Scholar 

  13. G. Schoeters and H. O. Desseyn, Transition Met. Chem., 6, 305 (1981).

    Google Scholar 

  14. H. O. Desseyn and G. Schoeters, Bull. Soc. Chim. Belg., 95, 13 (1986).

    Google Scholar 

  15. F. Quaeyhaegens, S. P. Perlepes and H. O. Desseyn, Spectrochim. Acta, 43A, 917 (1987).

    Google Scholar 

  16. F. J. Quaeyhaegens, S. P. Perlepes and H. O. Desseyn, Spectrochim. Acta, 45A, 809 (1989).

    Google Scholar 

  17. S. P. Perlepes, F. Quaeyhaegens and H. O. Desseyn, Bull. Soc. Chim. Belg., 98, 153 (1989).

    Google Scholar 

  18. S. P. Perlepes, F. J. Quaeyhaegens and H. O. Desseyn, Transition Met. Chem., 15, 132 (1990).

    Google Scholar 

  19. F. J. Quaeyhaegens, H. O. Desseyn, S. P. Perlepes, J. C. Plakatouras, B. Bracke and A. T. H. Lenstra, Transition Met. Chem., 16, 92 (1991).

    Google Scholar 

  20. I. I. Kalinichenko, N. M. Titov and L. A. Pecherskikh, Russ. J. Inorg. Chem., 34, 1280 (1989) and references therein.

    Google Scholar 

  21. L. S. Tikhonova and A. I. Stetsenko, Russ. J. Inorg. Chem., 38, 90 (1993).

    Google Scholar 

  22. J. C. Plakatouras, S. P. Perlepes, D. Mentzafos, A. Terzis, T. Bakas and V. Papaefthymiou, Polyhedron, 11, 2657 (1992).

    Google Scholar 

  23. H. Sigel and R. B. Martin, Chem. Rev., 82, 385 (1982).

    Google Scholar 

  24. F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 5th Edit., Wiley, New York, 1988, pp. 702, 716, 729–731, 744, 745, 766–772.

    Google Scholar 

  25. S. De Beukeleer, H. O. Desseyn and S. P. Perlepes, submitted for publication in Thermochim. Acta.

  26. B. F. Little and G. J. Long, Inorg. Chem., 17, 3401 (1978) and references therein.

    Google Scholar 

  27. P. N. Hawker and M. V. Twigg in G. Wilkinson, R. D. Gillard and J. A. McCleverty (Eds), Comprehensive Coordination Chemistry, Pergamon Press, Oxford, 1987, Chap. 44, pp. 1210–1211.

    Google Scholar 

  28. N. N. Greenwood and T. C. Gibb, Mössbauer Spectroscopy, Chapman and Hall, London, 1971.

    Google Scholar 

  29. R. Ingalls, Phys. Rev., 133A, 787 (1964).

    Google Scholar 

  30. P. Illiopoulos and K. S. Murray, J. Chem. Soc., Dalton Trans., 433 (1988).

  31. B. J. Hathaway, Coord. Chem. Rev., 35, 211 (1981).

    Google Scholar 

  32. B. J. Hathaway, J. Chem. Soc., Dalton Trans., 1196 (1972).

  33. D. W. Smith, J. Chem. Soc. (A), 3108 (1970).

  34. W. E. Estes, D. P. Gavel, W. E. Hatfield and D. J. Hodgson, Inorg. Chem., 17, 1415 (1978).

    Google Scholar 

  35. A. B. P. Lever, Inorganic Electronic Spectroscopy, 2nd Edit., Elsevier, Amsterdam, 1984, pp. 355, 356, 448–451, 458–72, 480–505, 507–544, 554–572.

    Google Scholar 

  36. R. S. Drago, Physical Methods in Chemistry, Saunders, Philadelphia, 1977, pp. 359–395, 647–649.

    Google Scholar 

  37. S. De Beukeleer and H. O. Desseyn, submitted for publication in Spectrochim. Acta.

  38. P. X. Armendarez and K. Nakamoto, Inorg. Chem., 5, 796 (1966).

    Google Scholar 

  39. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 3rd Edit., Wiley, New York, 1977, pp. 231, 244–247, 270–274, 317–324.

    Google Scholar 

  40. L. S. Gelfand, F. J. Iaconianni, L. L. Pytlewski, A. N. Speca, C. M. Mikulski and N. M. Karayannis, J. Inorg. Nucl. Chem., 42, 377 (1980).

    Google Scholar 

  41. S. P. Perlepes, P. Jacobs, H. O. Desseyn and J. M. Tsangaris, Spectrochim. Acta, 43A, 1007 (1987).

    Google Scholar 

  42. G. J. Kleywegt, W. G. R. Wiesmeijer, G. Van Driel, W. L. Driessen, J. Reedijk and J. H. Noordik, J. Chem. Soc., Dalton Trans., 2177 (1985).

  43. U. Casellato, P. A. Vigato and M. Vidali, Coord. Chem. Rev., 36, 183 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Beukeleer, S., Desseyn, H.O., Perlepes, S.P. et al. Transition metal complexes with neutral and deprotonated malonamide. Transition Met Chem 19, 468–476 (1994). https://doi.org/10.1007/BF00139331

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00139331

Keywords

Navigation