Skip to main content
Log in

Transposable elements and the evolution of genome organization in mammals

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

All mammalian transposable elements characterized to date appear to be nonrandomly distributed in the mammalian genome. While no element has been found to be exclusively restricted in its chromosomal location, LINE elements and some retrovirus-like elements are preferentially accumulated in G-banding regions of the chromosomes, and in some cases in the sex chromosomes, while SINE elements occur preferentially in R-banding regions. Four mechanisms are presented which may explain the nonrandom genomic distribution of mammalian transposons: i) sequence-specific insertion, ii) S-phase insertion, iii) ectopic excision, and iv) recombinational editing. Some of the available data are consistent with each of these four models, but no single model is sufficient to explain all of the existing data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ariga, T., P. E. Carter & A. E. Davis, 1990. Recombinations between Alu repeat sequences that result in partial deletions within the C1-inhibitor gene. Genomics 8: 607–613.

    Google Scholar 

  • Baker, R. J. & H. A. Wichman, 1990. Retrotransposon mys is concentrated on the sex chromosomes: implications for copy number containment. Evol. 44: 2083–2088.

    Google Scholar 

  • Benveniste, R. E., 1985. The contributions of retroviruses to the study of mammalian evolution, pp. 359–417 in Molecular Evolutionary Genetics, edited by R. J. MacIntyre. Plenum Publishing Corporation, New York.

    Google Scholar 

  • Boyle, A. L., S. G. Ballard & D. C. Ward, 1990. Differential distribution of long and short interspersed element sequences in the mouse genome-Chromosome karyotyping by fluorescence in situ hybridization. Proc. Nat. Acad. Sci. USA 87: 7757–7761.

    Google Scholar 

  • Bradshaw, V. A. & K. McEntee, 1989. DNA damage activates transcription and transposition of yeast Ty retrotransposons. Mol. Gen. Genet. 218: 465–474.

    Google Scholar 

  • Chen, T. L. & L. Manuelidis, 1989. SINEs and LINEs cluster in distinct DNA fragments of Giemsa band size. Chromosoma 98: 309–316.

    Google Scholar 

  • Deininger, P. L., 1989. SINEs: short interspersed repeated DNA elements in higher eukaryotes, pp. 619–636 in Mobile DNA, edited by D. E. Berg & M. M. Howe. Am. Soc. Microbiol., Washington, DC.

    Google Scholar 

  • Friesen, P. D. & M. S. Nissen, 1990. Gene organization and transcription of ted, a lepidopteran retrotransposon integrated within the baculovirus genome. Mol. Cell. Biol. 10: 3067–3077.

    Google Scholar 

  • Furano, A. V., C. C. Somerville, P. N. Tsichlis & E. D'Ambrosio, 1986. Target sites for the transposition of rat long interspersed repeated DNA elemens (LINEs) are not random. Nucl. Acids Res. 14: 3717–3727.

    Google Scholar 

  • Gardner, M. B., C. A. Kuzak & S. J. O'Brien, 1991. The Lake Casitas wild mouse: evolving genetic resistance to retroviral disease. Trends in Genetics 7: 22–27.

    Google Scholar 

  • Hardies, S. C., S. L. Martin, C. F. Voliva, C. A. Hutchison III & M. H. Edgell, 1986. An analysis of replacement and synonymous changes in the rodent L1 repeat family. Mol. Biol. Evol. 3: 109–125.

    Google Scholar 

  • Holmquist, G. 1988. DNA sequences in G-bands and R-bands, pp. 76–121 in Chromosomes and Chromatin, edited by R. W. Adolph. CRC Press, Boca Raton.

    Google Scholar 

  • Hutchison III, C. A., S. C. Hardies, D. D. Loeb, W. R. Shehee & M. H. Edgell, 1989. LINEs and related retroposons: Long interspersed repeated sequences in the eukaryotic genome, pp. 593–617 in Mobile DNA, edited by D. E. Berg & M. M. Howe. Am. Soc. Microbiol., Washington, DC.

    Google Scholar 

  • Korenberg, J. R. & M. C. Rykowski, 1988. Human genome organization: Alu, LINEs, and the molecular structure of metaphase chromosome bands. Cell 53: 391–400.

    Google Scholar 

  • Kuff, E. L., J. E. Fewell, K. K. Lueders, J. A. DiPaolo, S. C. Amsbaugh & N. C. Popescu, 1986. Chromosome distribution of intracisternal A-particle sequences in the Syrian hamster and mouse. Chromosoma 93: 213–219.

    Google Scholar 

  • Langley, C. H., E. Montgomery, R. Hudson, N. Kaplan & B. Charlesworth, 1988. On the role of unequal exchange in the containment of transposable element copy number. Genet. Res. 52: 223–235.

    Google Scholar 

  • Lichter, P., S. A. Ledbetter, D. H. Ledbetter & D. C. Ward, 1990. Fluorescence in situ hybridization with Alu and L1 polymerase chain reaction probes for rapid characterization of human chromosomes in hybrid cell lines. Proc. Nat. Acad. Sci. USA 87: 6634–6638.

    Google Scholar 

  • Manuelidis, L., 1982. Repeated DNA sequences and nuclear structure, pp. 263–285 in Genome Evolution, edited by G. A. Dover & R. B. Flavell. Academic Press, New York.

    Google Scholar 

  • Manuelidis, L. & T. L. Chen, 1990. A unified model of eukaryotic chromosomes. Cytometry 11: 8–25.

    Google Scholar 

  • Martin, S. L., 1991. LINES. Current Opinions Genet. Devel. 1: 000–000.

    Google Scholar 

  • McDonald, J., 1990. Macroevolution and retroviral elements. BioScience 40: 183–191.

    Google Scholar 

  • Meunier-Rotival, M., P. Soriano, G. Cuny, F. Strauss & G. Bernardi, 1982. Sequence organization and genomic distribution of the major family of interspersed repeats of mouse DNA. Proc. Nat. Acad. Sci. USA 79: 355–359.

    Google Scholar 

  • Paquin, C. D. & V. M. Williamson, 1984. Temperature effects on Ty transposition. Science 226: 53–55.

    Google Scholar 

  • Pine, D. S., E. C. Bourekas & S. S. Potter, 1988. Mys retrotransposons in Peromyscus leucopus and transgenic Mus musculus. Nucl. Acid. Res. 16: 3359–3373.

    Google Scholar 

  • Rudiger, N. S., P. S. Hansen, M. Jorgensen, O. Faergeman L. Bolund & N. Gregersen, 1991. Repetitive sequences involved in the recombination leading to deletion of exon-5 of the low-density lipoprotein receptor gene in a patient with familial hypercholesterolemia. Eur. J. Bioch. 198: 107–111.

    Google Scholar 

  • Sandmeyer, S. B., L. J. Hansen & D. L. Chalker, 1990. Integration specificity of retrotransposons and retroviruses. Ann. Rev. Genet. 24: 491–518.

    Google Scholar 

  • Servomaa, K. & T. Tytomaa, 1990. UV light and ionizing radiations cause programmed dealth of rat chloroleukaemia cells by inducing retropositions of a mobile DNA element (L1Rn). Int. J. Rad. Biol. 57: 331–343.

    Google Scholar 

  • Soriano, P., M. Meunier-Rotival & G. Bernardi, 1983. The distribution of interspersed repeats is nonuniform and conserved in the mouse and human genomes. Proc. Nat. Acad. Sci. USA 80: 1816–1820.

    Google Scholar 

  • Stavenhagen, J. B. & D. M. Robins, 1988. An ancient provirus has imposed androgen regulation on the adjacent mouse sex-limited protein gene. Cell 55: 247–254.

    Google Scholar 

  • Strand, D. J. & J. F. McDonald, 1985. Copia is transcriptionally responsive to environmental stress. Nucl. Acid. Res. 13: 4401–4410.

    Google Scholar 

  • Syvanen, M., 1984. The evolutionary implications of mobile genetic elements. Ann. Rev. Genet. 18: 271–293.

    Google Scholar 

  • Temin, H. M., 1985. Reverse transcription in the eukaryotic genome: retroviruses, pararetroviruses, retroposons, and retrotranscripts. Mol. Biol. Evol. 2: 455–468.

    Google Scholar 

  • Wallace, M. R., L. B. Andersen, A. M. Saulino, P. E. Gregory, T. W. Glover & F. S. Collins, 1991. A de novo Alu insertion results in neurofibromatosis type I. Nature 353: 864–866.

    Google Scholar 

  • Wichman, H. A., D. S. Pine & S. S. Potter, 1985. Mys, a family of mammalian transposable elements isolated by phylogenetic screening. Nature 317: 77–81.

    Google Scholar 

  • Xiong, Y. & T. H. Eickbush, 1990. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 9: 3353–3362.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wichman, H.A., Van Den Bussche, R.A., Hamilton, M.J. et al. Transposable elements and the evolution of genome organization in mammals. Genetica 86, 287–293 (1992). https://doi.org/10.1007/BF00133727

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00133727

Key words

Navigation