Skip to main content
Log in

Thehermit transposable element of the Australian sheep blowfly,Lucilia cuprina, belongs to thehAT family of transposable elements

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

We report the cloning ofhermit, a member of thehAT family of transposable elements from the genome of the Australian sheep blowfly,Lucilia cuprina. Hermit is 2716 bp long and is 49% homologous to the autonomoushobo element,HFL1, at the nucleic acid level.Hermit has 15 bp terminal inverted repeats that share 10 bp with the terminal inverted repeats ofHFL1. Conceptual translation reveals a 583 residue open reading frame (ORF) that is 64% similar and 42% identical to theHFL1 ORF. However, the sequence of thehermit element contains two frameshifts within the putative ORF, indication thathermit is an inactive element. Analysis ofL. cuprina strains from within and outside Australia suggested thathermit is present as a single copy in all the genomes analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkinson, P. W., W. D. Warren & D. A. O'Brochta, 1993. The hobo transposable element ofDrosophila can be cross-mobilised in houseflies and excises like the Ac element of maize. Proc. Natl. Acad. Sci. USA 90: 9693–9697.

    Google Scholar 

  • Blackman, R. K., M. M. Koehler, R. Grimaila & W. M. Gelbart, 1989. Identification of a fully-functional hobo transposable element and its use for germ-like transformation ofDrosophila. The EMBO Journal 8: 211–217.

    Google Scholar 

  • Board, P., R. Russell, R. Marano & J. G. Oakeshott, 1994. Purification, molecular cloning and heterologous expression of a glutathione S-transferase from the Australian sheep blowfly (Lucilia cuprina). Biochem. Journal 299: 425–430.

    Google Scholar 

  • Boussy, I. A. & G. Periquet, 1993. The transposable element hobo inDrosophila melanogaster and related species, pp 192–200 in Transposable Elements and Evolution, edited by J.F. McDonald. Kluwer Academic Publishers, Netherlands.

    Google Scholar 

  • Calvi, B. R., T. J. Hong, S. D. Findley & W. M. Gelbart, 1991. Evidence for a common evolutionary origin of inverted repeat transposons inDrosophila and plants: hobo, Activator, and Tam3. Cell 66: 465–471.

    Google Scholar 

  • Crozier, Y. C., S. Koulianos & R. H. Crozier, 1991. An improved test for Africanized honeybee mitochondrial DNA. Experientia 47: 968–969.

    Google Scholar 

  • Daniels, S. B., A. Chovnick & I. A. Boussy, 1990. Distribution of hobo transposable elements in the genusDrosophila. Mol. Biol. Evol. 7: 589–606.

    Google Scholar 

  • Fedoroff, N. V., 1989. Maize Transposable Elements, pp. 375–412 in Mobile DNA, edited by D. E. Berg and M. M. Howe. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Elizur, A., A. T. Vacek & A. J. Howells, 1990. Cloning and characterisation of the white and topaz eye colour genes from the sheep blowflyLucilia cuprina. J. Mol. Evol. 30: 347–358.

    Google Scholar 

  • Feldmar, S. & R. Kunze, 1991. The ORFa protein, the putative transposase of maize transposable element Ac, has a basic DNA binding domain. The EMBO Journal 10: 4003–4010.

    Google Scholar 

  • Haring, M. A., C. M. T. Rommens, H. J. J. Nijkamp & J. Hille, 1991. The use of transgenic plants to understand transposition mechanisms and to develop transposon tagging strategies. Plant Molecular Biology 16: 449–461.

    Google Scholar 

  • Hehl, R., W. K. F. Nacken, A. Krause, H. Saedler & H. Sommer, 1991. Structural analysis of Tam3, a transposable element fromAntirrhinum majus, reveals homologies to the Ac element from maize. Plant Molecular Biology 16: 369–371.

    Google Scholar 

  • Jones, D. A., C. M. Thomas, K. E. Hammond-Kosack, P. J. Balint-Kurti & J. D. G. Jones, 1994. Isolation of the tomato Cf-9 Gene for resistance toCladosporium fulvum by transposon tagging. Science 266: 789–793.

    Google Scholar 

  • Kaplan, N. L., R. R. Hudson & C. H. Langley, 1989. The ‘hitchhiking effect’ revisited. Genetics 123: 887–899.

    Google Scholar 

  • Lidholm, D-A., A. R. Lohe & D. L. Hartl, 1993. The transposable element mariner mediates germline transformation inDrosophila melanogaster. Genetics 134: 859–868.

    Google Scholar 

  • Maynard Smith, J. & J. Haigh, 1974. The hitchhiking effect of a favourable gene. Genet. Res. 23: 23–35.

    Google Scholar 

  • Nasmyth, K. A., 1982. The regulation of yeast mating type. Chromatin structure by SIR: An action at a distance effecting both transcription and transposition. Cell 30: 567–578.

    Google Scholar 

  • O'Brochta, D. A. & A. M. Handler, 1993. Prospects and Possibilities for Gene Transfer Techniques in Insects. pp. 451–488 in Molecular Approaches to Fundamental and Applied Entomology, edited by J. Oakeshott and M. J. Whitten. Springer-Verlag, New York Inc., N.Y.

    Google Scholar 

  • O'Brochta, D. A., W. D. Warren, K. J. Saville & P. W. Atkinson, 1994. Interplasmid transposition ofDrosophila hobo elements in non-drosophilid insects. Mol. Gen. Genet. 244: 9–14.

    Google Scholar 

  • Pascual, L. & G. Periquet, 1991. Distribution of hobo transposable elements in natural populations ofDrosophila melanogaster. Mol. Biol. Evol. 8: 282–296.

    Google Scholar 

  • Perkins, H. D. & A. J. Howells, 1992. Genomic sequences with homology to the P element ofDrosophila melanogaster occur in the blowflyLucilia cuprina. Proc. Natl. Acad. Sci. USA 89: 10753–10757.

    Google Scholar 

  • Pridmore, R. D., 1987. New and versatile cloning vectors with kanamycin-resistance marker. Gene 56: 309–312.

    Google Scholar 

  • Rubin, G. M. & A. C. Spradling, 1982. Genetic transformation ofDrosophila with transposable element vectors. Science 218: 348–353.

    Google Scholar 

  • Sambrook, J., E. F. Fritsch & T. Maniatis, 1989. Molecular Cloning: A laboratory manual; Cold Spring Harbour Laboratory Press, 3 Vols., Cold Spring Harbour, N.Y.

    Google Scholar 

  • Sanger, F., S. Nicklen & A. R. Coulson, 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463–5467.

    Google Scholar 

  • Simmons, G. M., 1992. Horizontal transfer of hobo transposable elements within theDrosophila melanogaster species complex: Evidence from DNA sequencing. Mol. Biol. Evol. 9: 1050–1060.

    Google Scholar 

  • Streck, R. D., J. E. MacGaffey & S. K. Beckendorf, 1986. The structure of hobo transposable elements and their insertion sites. The EMBO Journal 5: 3615–3623.

    Google Scholar 

  • Toung, Y. P. S., T. S. Hsieh & C. P. D. Tu, 1990.Drosophila glutathione S-transferase 1–1 shares a region of sequence homology with the maize glutathione S-transferase III. Proc. Natl. Acad. Sci. USA 87: 31–35.

    Google Scholar 

  • Wang, J. Y., S. McCommas & M. Syvanen, 1991. Molecular cloning of a glutathione S-transferase overproduced in an insecticide resistant strain of the housefly (Musca domestica). Mol. Gen. Genet. 227: 260–266.

    Google Scholar 

  • Warren, W. D., P. W. Atkinson & D. A. O'Brochta, 1994. The Hermes transposable element from the houseflyMusca domestica is a short inverted repeat-type element of the hobo, Ac and Tam3 (hAT) element family. Genet. Res. Camb. 64: 87–97.

    Google Scholar 

  • Warren, W. D., P. W. Atkinson & D. A. O'Brochta, 1995. The Australian Bushfly,Musca vetustissima contains a sequence related to the transposons of the hobo, Ac and Tam3 family. Gene 154: 137–138.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coates, C.J., Johnson, K.N., Perkins, H.D. et al. Thehermit transposable element of the Australian sheep blowfly,Lucilia cuprina, belongs to thehAT family of transposable elements. Genetica 97, 23–31 (1996). https://doi.org/10.1007/BF00132577

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00132577

Key words

Navigation