Skip to main content
Log in

A mathematical model for the G1/S transition of the mammalian cell cycle

  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Summary

Genetic intervention in cell-cycle regulation is a promising strategy to obtain mammalian cell culture proliferation in the absence of exogenous growth factors. In order to gain insights into this approach, known interactions among the four proteins cyclin E, cdk2, the retinoblastoma gene product (RB), and the transcription factor E2F, all centrally involved in control of the G1/S transition of the eucaryotic cell cycle, guided the formulation of kinetics in intracellular mass balances on these components. Stable oscillatory solutions of these equations, which include the diluting effects of cell volume increase and a resulting special boundary condition, correspond to cell proliferation. The model simulates the qualitative consequences on cell cycle regulation of overexpression of cyclin E, E2F, and of RB deregulation in agreement with experiment. Bifurcation analysis of the model suggests strategies for rational manipulation of the cell cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bailey, J.E. and Ollis, D. (1986). Biochemical Engineering Fundamentals, 2 ed., New York: McGraw-Hill.

    Google Scholar 

  • Cooper, J. and Whyte, P. (1989). Cell 58, 1009.

    Google Scholar 

  • Fredrickson, A. (1976). Biotech. Bioeng. 28, 1481.

    Google Scholar 

  • Goldbeter, A. (1991). Proc. Natl. Acad. Sci. USA 88, 9107.

    Google Scholar 

  • Hatzimanikatis, V., Lee, K.H., and Bailey, J.E. (1995). Manuscript in preparation.

  • Knoblich, J.A., Sauer, K., Jones, L., Richardson, Saint, R. and Lehner, C.F. (1994). Cell 77, 107.

    Google Scholar 

  • Lee, K.H. (1995). Ph.D. thesis, California Institute of Technology.

  • Lees, E., Faha, B., Dulic, V., Reed, S., and Harlow, E. (1992). Genes Dev. 6, 1874.

    Google Scholar 

  • Lin, B. and Wang, Y. (1992). In: Regulation of the Eukaryotic Cell Cycle, J. Marsh, ed. vol. 170. pp. 227–243, New York: Wiley.

    Google Scholar 

  • Matsushime, H., Roussel, M.F., Ashmun, R.A., and Sherr, C. (1991). Cell 65, 701.

    Google Scholar 

  • Murray, A. and Kirschner, M. (1989). Science 246, 614.

    Google Scholar 

  • Norel, R. and Agur, Z. (1991). Science 251, 1076.

    Google Scholar 

  • Novak, B. and Tyson, J. (1993). J. Cell Sci. 106, 1153.

    Google Scholar 

  • Nurse, P. (1990). Nature 344, 503.

    Google Scholar 

  • Pagano, M., Draetta, G., Jansen-Dürr, P. (1992). Science 255, 1144.

    Google Scholar 

  • Peeper, D.S., van der Eb, A.J. and Zantema, A. (1994). Biochim. Biophys. Acta 1198, 215.

    Google Scholar 

  • Renner, W. A., Lee, K.H., Hatzimanikatis, V., Bailey, J.E., and Eppenberger, H.M. (1995). Biotech. Bioeng., in press.

  • Tyson, J. (1993). J. Theor. Biol. 165, 101.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hatzimanikatis, V., Lee, K.H., Renner, W.A. et al. A mathematical model for the G1/S transition of the mammalian cell cycle. Biotechnol Lett 17, 669–674 (1995). https://doi.org/10.1007/BF00130348

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00130348

Keywords

Navigation