Skip to main content
Log in

Mercury biotransformations and their potential for remediation of mercury contamination

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Bacterially mediated ionic mercury reduction to volatile Hg0 was shown to play an important role in the geochemical cycling of mercury in a contaminated freshwater pond. This process, and the degradation of methylmercury, could be stimulated to reduce the concentration of methylmercury that is available for accumulation by biota. A study testing the utility of this approach is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HgR :

inorganic mercury resistance

Org-Hg:

organomercury

Org-HgR :

organomercury resistance

SRB:

sulfate reducing bacteria

Methyl-B12:

methylcobalamine

References

  • Akagi H, Takabatake E & Fujita Y (1974) Photochemical methylation of inorganic mercury in the presence of solid sulfur. Chem. Let. 761–764

  • Alberts JJ, Schindler JE, Miller RW & NutterJr. DE (1974) Elemental mercury evolution mediated by humic acid. Science 184: 895–897

    Google Scholar 

  • Baltisberger RJ, Hildebrand DA, Grieble D & Ballintine TA (1979) A study of the disproportionation of mercury (I) induced by gas sparging in acidic aqueous solutions for cold-vapor atomic absorption spectrometry. Anal. Chim. Acta 111: 111–122

    Google Scholar 

  • Barkay T (1987) Adaptation of aquatic microbial communities to Hg2+ stress. Appl. Environ. Microbiol. 53: 2725–2732

    Google Scholar 

  • Barkay T (1992) The mercury cycle. Encyclopedia of Microbiology, Vol 3. Academic Press Inc. San Diego

    Google Scholar 

  • Barkay T, Liebert C & Gillman M (1989) Hybridization of DNA probes with whole-community genome for detection of genes that encode microbial responses to pollutants: mer genes and Hg2+ resistance. Appl. Environ. Microbiol. 55: 1574–1577

    Google Scholar 

  • Barkay T, Turner RR, VandenBrook A & Liebert C (1991) The relationships of Hg(II) volatilization from a freshwater pond to the abundance of mer genes in the gene pool of the indigenous microbial community. Microb. Ecol. 21: 151–161

    Google Scholar 

  • Ben-Bassat D & Mayer AM (1978) Light-induced Hg volatilization and O2 evolution in Chlorella and the effect of DCMU and methylamine. Physiol. Plant. 42: 33–38

    Google Scholar 

  • Berman MT, ChaseJr T & Bartha R (1990) Carbon flow in mercury biomethylation by Desulfovibrio desulfuricans. Appl. Environ. Microbiol. 56: 298–300

    Google Scholar 

  • Bloom N (1989) Determination of picogram levels of methylmercury by aqueous phase ethylation, followed by cryogenic gas chromatography with cold vapour atomic fluorescence. Can. J. Fish. Aquat. Sci. 46: 1131–1140

    Google Scholar 

  • Bloom NS & Fitzgerald (1988) Determination of volatile mercury species at the picogram level by low temperature gas chromatography with cold-vapor atomic fluorescence detection. Anal. Chim. Acta 209: 151–161

    Google Scholar 

  • Blum JE & Bartha R (1980) Effect of salinity on methylation of mercury. Bull. Environm. Contam. Toxicol. 25: 404–408

    Google Scholar 

  • Bopp LH & Ehrlich HL (1988) Chromate resistance and reduction in Pseudomonas fluorescens strain LB300. Arch. Microbiol. 150: 426–431

    Google Scholar 

  • Choi S-C, Berman M & Bartha R (1991) Evidence for a novel Hg2+-methylating corrinoid in Desulfovibrio desulfuricans. Abst. 91th Annu. Meet. Am. Soc. Microbiol., Q-261, (p 320)

  • Compeau GC & Bartha R (1985) Sulfate-reducing bacteria: principle methylators of mercury in anoxic estuarine sediment. Appl. Environ. Microbiol. 50: 498–502

    Google Scholar 

  • Deacon GB (1978) Volatilization of methyl-mercuric chloride by hydrogen sulphide. Nature (London) 275: 344

    Google Scholar 

  • D'Itri PA & D'Itri FM (1978) Mercury contamination: a human tragedy. Environ. Manag. 2: 3–16

    Google Scholar 

  • Frankenberger Jr. WT (1992) Dissipation of soil selenium by microbial volatilization at Kesterson reservoir. Abst. 203rd Am. Soc. Chem. Nat. Meet. San Francisco, CA April 5–10, 1992

  • Griffin HG, Foster TJ, Silver S & Misra TK (1987) Cloning and DNA sequence of the mercuric- and organomercurial-resistance determinants of plasmid pDU1358. Proc. Natl. Acad. Sci. U.S.A. 84: 3112–3116

    Google Scholar 

  • Guard HE, Cobet AB & ColemanIII WM (1981) Methylation of trimethyltin compounds by estuarine sediments. Science 213: 770–771

    Google Scholar 

  • Hallas LE, Means JC & Cooney JJ (1982) Methylation of tin by estuarine microorganisms. Science 215: 1505–1507

    Google Scholar 

  • Halvorson HO, Pramer D & Rogul M (1985) Engineered Organisms in the Environment: Scientific Issues. American Society for Microbiology, Washington DC

    Google Scholar 

  • Hamer DH (1988) Metallothionein. Annu. Rev. Biochem. 55: 913–951

    Google Scholar 

  • Herrero M, de Lorenzo V & Timmis KN (1990) Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J. Bacteriol. 172: 6557–6567

    Google Scholar 

  • Horn J, Brunke M, Deckwer W-D & Timmis KN (1993) Pseudomonas putida strains which constitutively hyperexpress mercury resistance for biodetoxification of organomercurial pollutants. Appl. Environ. Microbiol. (in press)

  • Hudson RJM, Gherini SA & Munson RK (1991) The MTL mercury model: a description of the model, discussion of scientific issues, and presentation of preliminary results. In: Mercury in Temperate Lakes—1990 Annual Report

  • Jensen S & Jernelöv A (1969) Biological methylation of mercury in aquatic organisms. Nature 223: 753–754

    Google Scholar 

  • Karlson U & FrankenbergerJr. WT (1989) Accelerated rates of selenium volatilization from California soils. Soil Sci. Soc. Am. J. 53: 749–753

    Google Scholar 

  • Kim JP & Fitzgerald WF (1986) Sea-air partitioning of mercury in the equatorial Pacific ocean. Science 231: 1131–1133

    Google Scholar 

  • Kogure K, Simidu U & Taga N (1979) A tentative direct microscopic method for counting living marine bacteria. Can. J. Microbiol. 25: 415–420

    Google Scholar 

  • Liebert C & Barkay T (1988) A direct viable counting method for measuring tolerance of aquatic microbial communities to Hg2+. Can. J. Microbiol. 34: 1090–1095

    Google Scholar 

  • Liebert C, Barkay T & Turner RR (1991) Acclimation of aquatic microbial communities to Hg(II) and CH3HgCl in polluted freshwater ponds. Microb. Ecol. 21: 139–149

    Google Scholar 

  • Lovley DR & Phillips EJP (1992) Reduction of uranium by Desulfovibrio desulfuricans. Appl. Environ. Microbiol. 58: 850–856

    Google Scholar 

  • Lovley DR, Landa ER, Phillips EJP & Woodward JC (1992) Remediation of uranium-contaminated soils using uranium extractants and microbial uranium reduction. Abst. 203rd Am. Chem. Soc. Nat. Meeting, San Francisco April 5–10, 1992

  • Morita RY (1984) Starvation-survival of heterotrophs in the marine environment. Adv. Microb. Ecol. 6: 171–198

    Google Scholar 

  • Nagase H (1984) Mercury methylation by compounds in humic material. Sci. Tot. Environ. 32: 147–156

    Google Scholar 

  • Nagata T (1986) Carbon and nitrogen content of natural planktonic bacteria. Appl. Environ. Microbiol. 52: 28–32

    Google Scholar 

  • Nriagu JO (1979) The Biogeochemistry of Mercury in the Environment. Elsevier/North-Holland Biomedical Press, Amsterdam

    Google Scholar 

  • Pan-Hou HS & Imuna N (1982) Involvement of mercury methylation in microbial mercury detoxication. Arch. Microbiol. 131: 176–177

    Google Scholar 

  • Patterson JM & Passino R (1987) Metals Speciation, Separation, and Recovery. Lewis Publishers, Inc., Chelsea, MI

    Google Scholar 

  • O'Halloran TV, Frantz B, Myung KS, Ralston DM & Wright JG (1989) The MerR heavy metal receptor mediates positive activation in a topologically novel transcription complex. Cell 56: 119–129

    Google Scholar 

  • Olafson RW (1984) Prokaryotic metallothionein. Internat. J. Peptide Protein Res. 24: 303–308

    Google Scholar 

  • Rauser WE (1990) Phytochelatins. Annu. Rev. Biochem. 59: 61–86

    Google Scholar 

  • Rochelle PA, Wetherbee MK & Olson BH (1991) Distribution of DNA sequences encoding narrow- and broad-spectrum mercury resistance. Appl. Environ. Microbiol. 57: 1581–1589

    Google Scholar 

  • Silver S (1991) Resistance systems and detoxification of toxic heavy metals. In: Rossmoore H (Ed) Proceedings of the Eighth International Biodeterioration Symposium (pp 308–339). Elsevier Applied Science, London

    Google Scholar 

  • Silver S & Walderhaug M (1992) Gene regulation of plasmid- and chromosome-determined inorganic ion transport in bacteria. Microbiol. Rev. 56: 195–228

    Google Scholar 

  • Spain JC, Pritchard PH & Bourquin AW (1980) Effects of adaptation on biodegradation rates in sediment/water cores from estuarine and freshwater environments. Appl. Environ. Microbiol. 40: 726–734

    Google Scholar 

  • Stanier RY, Doudoroff M & Adelberg EF (1971) General Microbiology. The Macmillan Press Ltd. London

    Google Scholar 

  • Steinberg NA & Ormland RS (1990) Dissimilatory selenate reduction potentials in a diversity of sediment types. Appl. Environ. Microbiol. 56: 3550–3557

    Google Scholar 

  • Summers AO (1992) Untwist and shout: a heavy metal-responsive transcriptional regulator. J. Bacteriol. 174: 3097–3101

    Google Scholar 

  • Temple KA, Turner RR & Barkay T (1989) Volatilization of divalent mercury and demethylation of methylmercury: microbial adaptation in a mercury-contaminated site. Abst. Q-186, 89th Annu. Meet. Am. Soc. Microbiol. (p 361)

  • Thomas JM & Ward CH (1989) In situ biorestoration of organic contaminants in the subsurface. Environ. Sci. Technol. 23: 760–766

    Google Scholar 

  • Turner RJ, Hou Y, Weiner JH & Taylor DE (1992) The arsenical ATPase efflux pump mediates tellurite resistance. J. Bacteriol. 174: 3092–3094

    Google Scholar 

  • Turner RR, VandenBrook AJ, Barkay T & Elwood JW (1989) Volatilization, methylation, and demethylation of mercury in a mercury-contaminated stream. In: Vernet JP (Ed) Proc. Int. Conf. Heavy Metals in the Environment (pp 353–356). CEP Consultants Ltd., Edinburgh, UK

    Google Scholar 

  • Vonk JW & Sijpesteijn AK (1973) Studies on the methylation of mercuric chloride by pure cultures of bacteria and fungi. Antonie van Leeuwenhoek 39: 505–513

    Google Scholar 

  • Walsh CT, Distefano MD, Moore MJ, Shewchuk LM & Verdine GL (1988) Molecular basis of bacterial resistance to organomercurial and inorganic mercuric salts FASEB J. 2: 124–130

    Google Scholar 

  • Watras CJ & Bloom SN (1992) Mercury and methylmercury in individual zooplankton: implications for bioaccumulation. Limnol. Oceanogr. 37: 1313–1318

    Google Scholar 

  • Winfrey MR & Rudd JWM (1990) Environmental factors affecting the formation of methylmercury in low pH lakes. Environ. Toxicol. Chem. 9: 853–869

    Google Scholar 

  • Wood J (1974) Biological cycles for toxic elements in the environment. Science 183: 1049–1052

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barkay, T., Turner, R., Saouter, E. et al. Mercury biotransformations and their potential for remediation of mercury contamination. Biodegradation 3, 147–159 (1992). https://doi.org/10.1007/BF00129080

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00129080

Key words

Navigation