Skip to main content
Log in

Dispersal of annual plants in hierarchically structured landscapes

  • Published:
Landscape Ecology Aims and scope Submit manuscript

The scale at which plants utilize spatially distributed resources may be determined by their ability to locate sites that can sustain population growth. We developed a spatially-explicit model of the dispersal of annual plants in landscapes which were hierarchically structured, i.e., the spatial pattern of suitable sites was nested and scale-dependent. Results show that colonizing ability and extinction probability are most sensitive to the mean dispersal distance of the species. Dispersal out of the parental site, but within the immediate neighborhood, was the most efficient means for population expansion. When landscape patterns change with scale then dispersal distances determine the spatial scales of habitat utilization. As a complicating factor, the type of statistical distribution of dispersal distances also influences the colonizing ability. However, the importance of dispersal distance mean and distribution decreased as the number and connectance of suitable sites increased. The results suggest that landscape models which consider the interaction between scale dependent changes in landscape pattern and species dispersal and establishment characteristics are relevant to many issues in community ecology, invasion biology, and conservation biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Addicott, J.F., Aho, J.M., Antolin, M.F., Padilla, D.K., Richardson, J.S. and Soluk, D.A. 1987. Ecological neighborhoods: scaling environmental patterns. Oikos 49: 340–346.

    Google Scholar 

  • Bullock, S.H. 1976. Consequences of limited seed dispersal within simulated annual populations. Oecologia (Berl.) 24: 247–256.

    Google Scholar 

  • Bullock, S.H., and Primack, R.B. 1977. Comparative experimental study of seed dispersal on animals. Ecology 58: 681–686.

    Google Scholar 

  • Caswell, H. 1976. Community structure: a neutral model analysis. Ecol. Monogr. 46: 327–354.

    Google Scholar 

  • Chayes, J.T., Chayes, L. and Durrett, R. 1988. Connectivity properties of Mandelbrot's percolation process. Probability Theory and Related Fields 77: 307–324.

    Google Scholar 

  • Cohen, D. and Levin, S.A. 1991. Dispersal in patchy environments: the effects of temporal and spatial structure. Theor. Pop. Biol. 39: 63–99.

    Google Scholar 

  • Comins, H.N., Hamilton, W.D. and May, R.M. 1980. Evolutionary stable dispersal strategies. J. Theor. Biol. 82: 205–230.

    Google Scholar 

  • Crawley, M.J. and May, R.M. 1987. Population dynamics and plant community structure: competition between annual and perennials. J. Theor. Biol. 125: 475–489.

    Google Scholar 

  • Culver, B.C. and Beattie, A.J. 1980. The fate of Viola species dispersed by ants. Am. J. Bot. 67: 710–714.

    Google Scholar 

  • Debussche, M. and Isenmann, P. 1994. Bird-dispersed seed rain and seedling establishment in patchy mediterranean vegetation. Oikos 70.

  • Doak, D.F., Marino, P.C. and Kareiva, P.M. 1992. Spatial scale mediates the influence of habitat fragmentation on dispersal success: implications for conservation. Theor. Pop. Biol. 41: 315–336.

    Google Scholar 

  • Ellner, S.P. 1985a. ESS germination strategies in randomly varying environments. I Logistic type models. Theor. Pop. Biol. 28: 50–79.

    Google Scholar 

  • Ellner, S.P. 1985b. ESS germination strategies in randomly varying environments. II Reciproacal-yield law models. Theor. Pop. Biol. 28: 80–116.

    Google Scholar 

  • Fahrig, L. 1988. A general model of populations in patchy habitats. Appl. Math. and Computation 27: 53–66.

    Google Scholar 

  • Fahrig, L., Lefkovitch, L.P. and Merriam, H.G. 1983. Population stability in a patchy environment. In Analysis of Ecological Systems: State-of-the-Art in Ecological Modelling, pp. 61–67. Edited by W.K. Lauenroth, G.V. Skogerboe, and M. Flug. Elsevier, New York.

    Google Scholar 

  • Fahrig, L. and Merriam, H.G. 1985. Habitat patch connectivity and population survival. Ecology 66: 1762–1768.

    Google Scholar 

  • Fahrig, L. and Paloheimo, J.E. 1988a. Determinants of local population size in patchy habitats. Theor. Pop. Biol. 64: 194–213.

    Google Scholar 

  • Fahrig, L. and Paloheimo, J.E. 1988b. Effects of spatial arrangement of habitat patches on local population size. Ecology 69: 468–475.

    Google Scholar 

  • Fahrig, L. 1988. A general model of populations in patchy habitats. Appl. Math. and Computing 27: 53–66.

    Google Scholar 

  • Forman, R.T.T. and Godron, M. 1986. Landscape Ecology. John Wiley and Sons, NY.

    Google Scholar 

  • Fowler, N.L. 1988. What is a safe site?: Neighbor, litter, germination date, and patch effects. Ecology 69: 947–961.

    Google Scholar 

  • Gadgil, M. 1971. Dispersal: Population consequences and Evolution. Ecology 52: 253–261.

    Google Scholar 

  • Gardner, R.H., Milne, B.T., Turner, M.G. and O'Neill, R.V. 1987. Neutral models for the analysis of broad-scale landscape pattern. Landscape Ecol. 1: 19–28.

    Google Scholar 

  • Gardner, R.H. and O'Neill, R.V. 1991. Pattern, process and predictability: The use of neutral models for landscape analysis. In Quantitative Methods in Landscape Ecology. pp. 289–307. The analysis and interpretation of landscape heterogeneity. Edited by M.G. Turner and R.H. Gardner. Ecological Studies Series, Springer-Verlag, New York.

    Google Scholar 

  • Gardner, R.H., O'Neill, R.V. and Turner, M.G. 1993. Ecological implications of landscape fragmentation. In Humans as components of ecosystems: Subtle human effects on the ecology of populated areas, pp. 208–226. Edited by Pickett, S.T.A. and M.J. McDonnell. Springer-Verlag, New York.

    Google Scholar 

  • Gardner, R.H., Turner, M.G., O'Neill, R.V. and Lavorel, S. 1991. Simulation of the scale-dependent effects of landscape boundaries on species persistence and dispersal. In The Role of Landscape Boundaries in the Management and Restoration of Changing Environments, pp. 76–89. Edited by M.M. Holland, P.G. Risser and R.J. Naiman. Chapman and Hall, New York.

    Google Scholar 

  • Green, D.S. 1983. The efficacy of seed dispersal in relation to safe site density. Oecologia (Berl.) 56: 356–358.

    Google Scholar 

  • Grubb, P.J. 1977. The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biol. Review 52: 107–145.

    Google Scholar 

  • Hamilton, W.D. and May, R.M. 1977. Dispersal in stable habitats. Nature 269: 578–581.

    Google Scholar 

  • .Harper, J.L. 1977. Population Biology of Plants. Academic Press, London.

    Google Scholar 

  • Horvitz, C.C. and Schemske, D.W. 1986. Seed dispersal and environmental heterogeneity in a neotropical herb: a model of population and patch dynamics. In Frugivores and seed dispersal, pp. 169–186. Edited by A. Estrada and T.H. Fleming. Dr. W. Junk Publishers, Dordrecht.

    Google Scholar 

  • Jensen, T.S. 1985. Seed - seed predator interactions of European beech, Fagus sylvatica, and forest rodents, Clethrionomys glareolus and Apodemus flavicollis. Oikos 44: 149–156.

    Google Scholar 

  • Kareiva, P. and Andersen, M. 1988. Spatial aspects of species interactions: the wedding of models and experiments. In Community Ecology, pp. 38–54. Edited by A. Hastings. Springer-Verlag, New York.

    Google Scholar 

  • Klinkhamer, P.G.L., De Jong, T.J. and Van der Meijden, E. 1988. Production, dispersal, and predation of seeds in the biennial Cirsium vulgare. J. Ecol. 76: 403–414.

    Google Scholar 

  • Lavorel, S., Gardner, R.H. and O'Neill, R.V. 1993. Analysis of patterns in hierarchically structured - landscapes. Oikos 67: 521–528.

    Google Scholar 

  • Lavorel, S., Lebreton, J.D., Debussche, M. and Lepart, J. 1991. Nested spatial patterns in the vegetation and the seed bank of Mediterranean old fields. J. Veg. Sci. 2: 367–376.

    Google Scholar 

  • Lefkovitch, L.P. and Fahrig, L. 1985. Spatial characteristics of habitat patches and population survival. Ecol. Modelling 30: 297–308.

    Google Scholar 

  • Levin, D.A. and Kerster, H.W. 1974. Gene flow in seed plants. Evolutionary Biology 7: 139–220.

    Google Scholar 

  • Levin, S.A. 1974. Dispersal and population interactions. Am. Nat. 108: 207–228.

    Google Scholar 

  • Levin, S.A., Cohen, D. and Hastings, A. 1984. Dispersal strategies in patchy environments. Theor. Pop. Biol. 26: 165–191.

    Google Scholar 

  • McEvoy, P.B. and Cox, S.C. 1987. Wind dispersal distances in dimorphic achenes of Ragwort, Senecio jacobae. Ecology 68: 2006–2015.

    Google Scholar 

  • McIntyre, S. and Barrett, G.W. 1992. Habitat variegation, an alternative to fragmentation. Conservation Biol. 6: 146–147.

    Google Scholar 

  • McRill, M. and Sagar, G.R. 1973. Earthworms and seeds. Nature: 482.

  • Mandelbrot, B. 1983. The Fractal Geometry of Nature. W.H. Freeman and Co., NY.

    Google Scholar 

  • Maynard-Smith, J. 1976. Evolution and the theory of games. Am. Sci. 64: 41–45.

    Google Scholar 

  • Milne, B.T., Johnson, K.M. and Forman, R.T.T. 1989. Scaledependent proximity of wildlife habitat in a spatially neutral Bayesian model. Landscape Ecol. 2: 101–110.

    Google Scholar 

  • Motro, U. 1982a. Optimal rates of dispersal. I. Haploid populations. Theor. Pop. Biol. 31: 394–411.

    Google Scholar 

  • Motro, U. 1982b. Optimal rates of dispersal. II. Diploid populations. Theor. Pop. Biol. 31: 412–429.

    Google Scholar 

  • Olivieri, I. and Gouyon, P.H. 1985. Seed dimorphism and dis persal: theory and implications. In Structure and functioning of plant populations, pp. 77–90. Edited by J. Haeck, and J.W. Woldendorp. North Holland Publishing Company, Amsterdam.

    Google Scholar 

  • O'Neill, R.V., Milne, B.T., Turner, M.G. and Gardner, R.H. 1988. Resource utilization scales and landscape pattern. Landscape Ecol. 2: 63–69.

    Google Scholar 

  • O'Neill, R.V., Turner, S.J., Cullinan, V.I., Coffin, D.P., Cook, T., Conley, W., Brunt, J., Thomas, J.M., Conley, R. and Gosz, J. 1991. Multiple landscape scales: An intersite comparison. Landscape Ecol. 5: 137–144.

    Google Scholar 

  • O'Neill, R.V., Gardner, R.H. and Turner, M.G. 1992. A hierarchical neutral model for landscape analysis. Landscape Ecol. 7: 55–61.

    Google Scholar 

  • Perry, J.N. and Gonzalez-Andujar, J.L. 1993. Dispersal in a metapopulation neighbourhood model of an annual with a seed bank. J. Ecol. 81: 453–463.

    Google Scholar 

  • Pacala, S.W. and Silander, J.A. 1985. Neighborhood models of plant population dynamics. I. Single-species models of annuals. Am. Nat. 125: 385–411.

    Google Scholar 

  • Platt, W.J. 1975. The colonization and formation of equilibrium plant species associations on badger disturbances in a tallgrass prairie. Ecol. Monogr. 45: 285–305.

    Google Scholar 

  • Platt, W.J. 1976. The natural history of a fugitive prairie plant (Mirabilis hirsuta (Pursh. McM.)). Oecologia (Berl.) 22: 399–409.

    Google Scholar 

  • Portnoy, S. and Willson, M.F. 1993. Seed dispersal curves: behavior of the tail of the distribution. Evolutionary Ecology 7: 25–44.

    Google Scholar 

  • Rabinowitz, D.A. 1978. Abundance and diaspore weight in rare and common prairie grasses. Oecologia (Berl.)37: 213–219.

    Google Scholar 

  • Rabinowitz, D.A. and Rapp, J.K. 1981. Dispersal abilities of seven sparse and common grasses from a Missouri prairie. Amer. J. Bot. 68: 616–624.

    Google Scholar 

  • Risser, P.G., Karr, J.R. and Forman, R.T.T. 1984. Landscape Ecology: Directions and approaches. Illinois Natural History Survey, Special Publication 2, Champaign, IL.

    Google Scholar 

  • Roff, D.A. 1974a. Spatial heterogeneity and the persistence of populations. Oecologia (Berl.) 15: 245–258.

    Google Scholar 

  • Roff, D.A. 1974b. The analysis of a population model demonstrating the importance of dispersal in a heterogeneous environment. Oecologia (Berl.) 15: 259–275.

    Google Scholar 

  • Salisbury, E.J. 1961. Weeds and Aliens. Collins, London.

    Google Scholar 

  • Sawyer, A.J. and Haynes, D.L. 1985. Simulating the spatiotemporal dynamics of cereal leaf beetle in a regional crop system. Ecol. Modelling 30: 83–104.

    Google Scholar 

  • Sheldon, J.C. and Burrows, F.M. 1973. The dispersal effectiveness of the achene-pappus units of selected Composite in steady winds with convection. New Phytol. 72: 665–675.

    Google Scholar 

  • Skellam, J.G. 1951. Random dispersal in theoretical populations. Biometrika 38: 196–218.

    Google Scholar 

  • Stamp, N.E. and Lucas, J.R. 1983. Ecological correlates of explosive seed dispersal. Oecologia (Berl.) 59: 272–278.

    Google Scholar 

  • Stauffer, D. 1985. Introduction to Percolation Theory. Taylor and Francis, London.

    Google Scholar 

  • Swihart, R.K., Slade, N.A. and Bergstrom, B.J. 1988. Relating body size to the rate of home range use in mammals. Ecology 69: 393–399.

    Google Scholar 

  • Taylor, L.R. 1986. Synoptic dynamics, migration, and the Rothamsted Insect Survey. J. Anim. Ecol. 55: 1–38.

    Google Scholar 

  • Tomback, D.F. 1982. Dispersal of whitebark pine seeds by Clark's nutcraker: a mutualism hypothesis. J. Animal Ecol. 51: 451–467.

    Google Scholar 

  • Turner, M.G., Gardner, R.H., Dale, V.H. and O'Neill, R.V. 1989. Predicting the spread of disturbance across heterogeneous landscapes. Oikos 55: 121–129.

    Google Scholar 

  • .Van der Pijl, L. 1972. Principles of Dispersal in Higher Plants. Springer-Verlag, New York.

    Google Scholar 

  • Vance, R.R. 1984. The effect of dispersal on population stability in one-species, discrete space population growth models. Am. Nat. 123: 230–254.

    Google Scholar 

  • Venable, D.L. 1985. The evolutionary ecology of seed heteromorphism. Am. Nat. 125: 577–595.

    Google Scholar 

  • Verkaar, H.J., Schenkeveld, A.J. and Van de Klashorst, M.P. 1983. The ecology of short-lived forbs in chalk grasslands: Dispersal of seeds. New Phytol. 95: 335–344.

    Google Scholar 

  • Von Niessen, W. and Blumen, A. 1988. Dynamic simulation of forest fires. Can. J. Forest. Res. 18: 805–812.

    Google Scholar 

  • Wiens, J.A. 1985. Vertebrate responses to environmental patchiness in arid and semiarid ecosystems. In The Ecology of Natural Disturbances and Patch Dynamics, pp. 169–193. Edited by S.T.A. Pickett and P.S. White. Academic Press, New York.

    Google Scholar 

  • Wiens, J.A., Addicott, J.F. and Case, T.J. 1986. Overview: The importance of spatial and temporal scale in ecological investigations. In Community Ecology, pp. 145–153. Edited by J. Diamond and T.J. Case. Harper and Row, New York.

    Google Scholar 

  • Wiens, J.A. and Milne, B.T. 1989. Scaling of ‘landscapes’ in landscape ecology, or, landscape ecology from a beetle's perspective. Landscape Ecol. 3: 87–96.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lavorel, S., Gardner, R.H. & O'Neill, R.V. Dispersal of annual plants in hierarchically structured landscapes. Landscape Ecol 10, 277–289 (1995). https://doi.org/10.1007/BF00128995

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00128995

Keywords

Navigation