Skip to main content
Log in

Cardiac renin angiotensin system in hypertrophy and the progression to heart failure

  • Basic Science Reviews
  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Baker KM, Chernin MI, Wixon SK, Aceto JF. Reninangiotensin system involvement in pressure-overload cardiac hypertrophy in rats. Am J Physiol (Heart Circ Physiol) 1990; 259: H324-H332.

    Google Scholar 

  2. Schunkert H, Dzau VJ, Tang SS, Hirsch AT, Apstein CS, Lorell BH. Increased rat cardiac angiotensin converting enzyme activity and mRNA expression in pressure overload left ventricular hypertrophy: Effects on coronary resistance, contractility and relaxation. J Clin Invest 1990; 86: 1913–1920.

    Google Scholar 

  3. Everett AD, Tufro-McReddie A, Fisher A, Gomez RA. Angiotensin receptor regulates cardiac hypertrophy and transforming growth factor-B1 expression. Hypertension 1994; 23:587–592.

    Google Scholar 

  4. Pahor M, Bernabei R, Sgadari AN, et al. Enalapril prevents cardiac fibrosis and arrhythmias in hypertensive rats. Hypertension 1991;18:148–157.

    Google Scholar 

  5. Weinberg EO, Schoen FJ, Gearge D, et al. Angiotensinconverting enzyme inhibition prolongs survival and modifies the transition to heart failure in rats with pressure overload hypertrophy due to ascending aortic stenosis. Circulation 1994;90:1410–1422.

    Google Scholar 

  6. Urata H, Healy B, Stewart RW, Bumpus FM, Husain A. Angiotensin II-forming pathways in normal and failing human hearts. Circ Res 1990;66:883–890.

    Google Scholar 

  7. Husain A. The chymase-angiotensin system in humans. J Hypertens. 1993;11:1155–1159.

    Google Scholar 

  8. Grossman W. Cardiac hypertrophy: Useful adaptation to a pathological process? Am J Med 1980;69:576–584.

    Google Scholar 

  9. Grossman W, Jones D, McLaurin LP. Wall stress and patterns of hypertrophy in the human ventricle. J Clin Invest 1974;56:56–64.

    Google Scholar 

  10. Carabello BA, Zile MR, Tanaka R, Cooper G IV. Left ventricular hypertrophy due to volume overload versus pressure overload. Am J Physiol (Heart Circ Physiol 32) 1992; H1137-H1144.

  11. Anversa P, Ricci R. Olivetti G. Quantitative structural analysis of the myocardium during physiologic growth and induced cardiac hypertrophy: A review. J Am Coll Cardiol 1986;7:1140–1149.

    Google Scholar 

  12. Weber KT, Sun Y, Guarda E. Structural remodeling of the hypertensive heart and the role of hormones. Hypertension 1994;23:869–877.

    Google Scholar 

  13. Liu Z, Hilbelink DR, Gerdes AM. Regional changes in hemodynamics and cardiac myocyte size in rats with aortocaval fistulas 2. Long-term effects. Circ Res 1991;69:59–65.

    Google Scholar 

  14. Liu Z, Hilbelink DR, Crockett WB, Gerdes AM. Regional changes in hemodynamics and cardiac myocyte size in rats with aortocaval fistulas 1. Developing and established hypertrophy. Circ Res 1991;69:52–58.

    Google Scholar 

  15. Lerault F, Rouleau JL, Juneau C, Rose C, Rakusan K. Functional and morphological characteristics of compensated and decompensated cardiac hypertrophy in dogs with chronic infrarenal aorto-caval fistulas. Circ Res 1990;66: 846–849.

    Google Scholar 

  16. Weber KT, Pick R, Silver MA, et al. Fibrillar collagen and remodeling of the canine left ventricle. Circulation 1990;82: 1387–1401.

    Google Scholar 

  17. Iimoto DS, Covell JW, Harper E. Increase in cross-linking of Type I and Type III collagens associated with volume-overload hypertrophy. Circ Res 1988;63:399–408.

    Google Scholar 

  18. Urabe Y, Mann DL, Kent RL, et al. Cellular and ventricular contractile dysfunction in experimental canine mitral regurgitation. Circ Res 1992;70:131–147.

    Google Scholar 

  19. Dell'Italia LJ, Young A, Bishop SP, Orr R, Smaill B. Three-dimensional changes in left and right ventricular geometry and cardiac ultrastructure in chronic mitral regurgitation in the dog (abstr.) Circulation 1995 (Abstract)92(8):I791.

    Google Scholar 

  20. Carabello BA, Nakano K, Ciron W, Biederman R, Spann JF Jr. Left ventricular function in experimental volume overload hypertrophy. Am J Physiol (Heart Circ Physiol 25) 1989;256:H974-H981).

    Google Scholar 

  21. Zellner JI, Spinale FG, Eble DM, Hewett KW, Crawford FA. Alterations in myocyte shape and basement membrane attachment with tachycardia-induced heart failure. Circ Res 1991;69:590–600.

    Google Scholar 

  22. Komamura K, Shannon RP, Ihara T, Shen Y, Mirsky I, Bishop SP, Vatner SF. Exhaustion of Frank-Starling mechanism in conscious dogs with heart failure. Am J Physiol (Heart Circ Physiol) 1994;265:H1119-H1131.

    Google Scholar 

  23. Boluyt MO, O'Neill L, Meredith AL, et al. Alterations in cardiac gene expression during the transition from stable hypertrophy to heart failure. Marked upregulation of genes encoding extracellular matrix proteins. Circ Res 1994;75: 23–32.

    Google Scholar 

  24. Schelling PM, Fischer H, Ganten D. Angiotensin and cell growth: A link to cardiovascular hypertrophy? H Hypertens 1991;9:3–15.

    Google Scholar 

  25. Villarreal F, Kim NN, Ungab GD, Printz MP, Dillman WH. Identification of functional angiotensin II receptors on rat cardiac fibroblasts. Circulation 1993;88:2849–2861.

    Google Scholar 

  26. Shorb W, Booz GW, Dostal DE, Conrad DM, Chang KC, Baker KM. Angiotensin II is mitogenic in neonatal rat cardiac fibroblasts. Circ Res 1993;72:1245–1254.

    Google Scholar 

  27. Sadoshima J, Izumo S. Molecular characterization of angiotensin II-induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype. Circ Res 1993;73:413–423.

    Google Scholar 

  28. Baker KM, Aceto JF. Angiotensin II stimulation of protein synthesis and cell growth in chick heart cells. Am J Physiol 1990;259:H610-H618.

    Google Scholar 

  29. Aceto JF, Baker KM, [Sar1]angiotensin II receptormediated stimulation of protein synthesis in chick heart cells. Am J Physiol 1990;258 (Heart Circ Physiol 27): H806-H813.

    Google Scholar 

  30. Weber KT, Brilla CG. Pathological hypertrophy and cardiac interstitium. Circulation 1991;83:1849–1865.

    Google Scholar 

  31. Linz W, Scholkens BA, Ganten D. Converting enzyme inhibition specifically prevents the development and induces regression of cardiac hypertrophy in rats. Clin Exp Hyper Theory Pract 1989;A11:1325–1350.

    Google Scholar 

  32. Linz W, Schaper G, Wiemer G, Albus U, Scholkens BA. Ramipril prevents left ventricular hypertrophy and myocardial fibrosis without blood pressure reduction: A one year study in rats. Br J Pharmacol 1992;107:970–975.

    Google Scholar 

  33. Bruckschegel G, Holmer SR, Jandeleit K, et al. Blockade of the renin-angiotensin system in cardiac pressure-overload hypertrophy in rats. Hypertension 1991;25:250–259.

    Google Scholar 

  34. Linz W, Scholkens BA. A specific B2-bradykinin receptor antagonist HOE 140 abolishes the antihypertrophic effect ramipril. Br J Pharmacol 105:771–772, 1992.

    Google Scholar 

  35. Sadoshima J, Xu Y, Slayter HS, Izumo S. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell 1993;75:977–984.

    Google Scholar 

  36. Sadoshima J, Izumo S. Molecular characterization of angiotensin-II induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Circ Res 1993;73:413–423.

    Google Scholar 

  37. Boer PH, Ruzicka M, Lear W, Harmsen E, Rosenthal J, Leenen FHH. Stretch-mediated activation of the cardiac renin gene. Am J Physiol (Heart Circ Physiol 36) 1994;267: H1630-H1636.

    Google Scholar 

  38. Lutterotti NV, Catanzaro DF, Sealey JE, Laragh JH. Renin in not synthesized by cardiac and extrarenal vascular tissues: A review of experimental evidence. Circulation 1994;89:458–470.

    Google Scholar 

  39. Ruzicka M, Yuan B, Leenen FHH. Effects of enalapril versus losartan on regression of volume overload-induced cardiac hypertrophy in rats. Circulation 1994;90:484–491.

    Google Scholar 

  40. Ruzicka M, Leenen FHH. Relevance of blockade of cardiac and circulatory angiotensin-converting enzyme for the prevention of volume overload-induced cardiac hyperrophy. Circulation 1995;91:16–19.

    Google Scholar 

  41. Qing G, Garcia R. Chronic captopril and losartan (Dup 753) administration in rats with high output heart failure. Am J Physiol (Heart Circ Physiol 32) 1992;263:H833-H840.

    Google Scholar 

  42. Gay RG. Captopril reduces left ventricular enlargement induced by chronic volume overload. Am J Physiol (Heart Circ Physiol 28) 1990;259:H796-H803.

    Google Scholar 

  43. Dell'Italia LJ, Meng QC, Straeter-Knowlen IM, Hankes G, Oparil S, Elton T. Increased angiotensin converting enzyme and chymase-like activity in cardiac tissue of dogs with chronic mitral regurgitation. Am J Physiol, 1995;269 (Heart Circ. Physiol 38)1995:H2065-H2073.

    Google Scholar 

  44. Urata H, Boehm KD, Philip A, et al. Cellular localization and regional distribution of an angiotensin II-forming chymase in the heart. J Clin Invest 1993;91:1269–1281.

    Google Scholar 

  45. Falkenhahn M, Franke F, Bohle RM, et al. Cellular distribution of angiotensin-converting enzyme after myocardial infarction. Hypertension 1995;25:219–226.

    Google Scholar 

  46. Johnston CI. Tissue angiotensin converting enzyme in cardiac and vascular hypertrophy, repair, and remodeling. Hypertension 1994;23:258–268.

    Google Scholar 

  47. Tan LB, Jalil JE, Pick R, Janicki JS, Weber KT. Cardiac myocyte necrosis induced by angiotensin II. Circ Res 1991; 69:1185–1195.

    Google Scholar 

  48. Studer R, Reinecke H, Muller B, Holtz J, Hanjorg J, Drexler H. Increased angiotensin-I converting enzyme gene expression in the failing human heart. J Clin Invest 1994;94:301–310.

    Google Scholar 

  49. Zisman L, Bush EW, Taft CS, Bristow MR, Perryman MB, Raynolds MV. Increase in angiotensin converting gene expression and activity in the failing human ventricle. Circulation 1994;90:578I.

    Google Scholar 

  50. Sawa S, Kawaguchi H, Mochizuki N, et al. Distribution of angiotensinogen in diseased human hearts. Mol Cell Biochem 1994;132:15–23.

    Google Scholar 

  51. Lombes M, Alfaidy N, Eugene E, Lessana A, Farman N, Bonvalet JP, Prerequisite for cardiac aldosterone action. Mineralocorticoid receptor and 11 beta-hydroxysteroid dehydrogenase in the human heart. Circulation 1995;92:175–182.

    Google Scholar 

  52. Urata H, Healy B, Stewart RW, Bumpus FM, Husain A. Angiotensin II receptors in normal and failing human hearts. J Clin Endocrinol Metab 1989;69:54–66.

    Google Scholar 

  53. Studer R, Susch G, Muller B, Oechslin E, Hess OM, Drexler H. Role of pressure overload and wall stress for cardiac gene expression of angiotensin converting enzyme in humans. Circulation 1994;90:451I.

    Google Scholar 

  54. Zisman LS, Abraham WT, Meixell GE, et al. Angiotensin II formation in the intact human heart: Predominance of the angiotensin converting enzyme pathway. J Clin Invest 1995;95:1490–1498.

    Google Scholar 

  55. Friedrich SP, Lorell BH, Rousseau MF, et al. Increased angiotensin-converting enzyme inhibition improves diastolic function in patients with left ventricular hypertrophy due to aortic stenosis. Circulation 1994;90:2761–2771.

    Google Scholar 

  56. Finckh M, Hellmann W, Ganten D, et al. Enhanced cardiac angiotensinogen gene expression and angiotensin converting enzyme activity in tachypacing-induced heart failure in rats. Basic Res Cardiol 1991;86:303–316.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dell'Italia, L.J., Oparil, S. Cardiac renin angiotensin system in hypertrophy and the progression to heart failure. Heart Failure Rev 1, 63–72 (1996). https://doi.org/10.1007/BF00128557

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00128557

Keywords

Navigation