Skip to main content
Log in

High atmospheric NO x levels and multiple photochemical steady states

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Previous zero-dimensional photochemical calculations indicate that multiple tropospheric steady states may exist, in which different NO x (≡NO+NO2) levels could be supported by the same source of NO x . To investigate this possibility more closely, a one-dimensional photochemical model has been used to estimate the rate of removal of atmospheric NO x compounds at different NO x levels. At low NO x levels NO x is photochemically converted to HNO3, which is removed by either wet or dry deposition. At high NO x levels formation of HNO3 is inhibited, and NO x is removed by a variety of other processes, including rainout of N2O4 and N2O5, surface deposition of NO and NO2, and direct dissolution of NO and NO2 in rainwater. Multiple steady states are possible if surface deposition of NO x is relatively inefficient. The NO x source required to trigger high atmospheric NO x levels is approximately 10 to 15 times the present global emission rate-less than half the source strength predicted by the zero-dimensional model. NO x mixing ratios in excess of 10-7 would cause severe damage to the ozone layer and could result in either a climatic warming or cooling, depending upon the amount of NO2 present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackerman, M., 1970, Ultraviolet solar radiation related to mesospheric processes, Inst. Aeronaut. Spatiale Belge Brussels, A-77, 149–159.

    Google Scholar 

  • Ackerman, T. P., Toon, O. B., and Pollack, J. B. P., 1986, The climatic impact of optically-thick aerosol clouds, J. Geophys. Res., submitted.

  • Baulch, D. L., Drysdale, D. D., and Horne, D. G., 1973, Evaluated Kinetic Data for High Temperature Reactions, Vol. 2: Homogeneous gas phase reactions of the H 2N 2O 2 system, Butterworths, London.

    Google Scholar 

  • Berkner, L. V., and Marshall, L. L., 1965, On the origin and rise of oxygen concentration in the earth's atmosphere, J. Atmos. Sci. 22, 225–261.

    Google Scholar 

  • Borucki, W. J., and Chameides, W. L., 1984, Lightning: Estimates of the rates of energy dissipation and nitrogen fixation, Rev. Geophys. Space Phys. 22, 263–372.

    Google Scholar 

  • Chan, W. H., Nordstrom, R. J., Calvert, J. G., and Shaw, J. H., 1976, Kinetic study of HONO formation and decay reactions in gaseous mixtures of HONO, NO, NO2, H2O, and N2 Environ. Sci. Technol. 10, 674–682.

    Google Scholar 

  • Cieslik, S., and Nicolet, M., 1973, The aeronomic dissociation of nitric oxide, Plan. Space Sci. 21, 925–938.

    Google Scholar 

  • Clyne, M., and Monkhouse, P., 1977, Atomic resonance fluorescence for rate constants of rapid bimolecular reactions. Part 5—Hydrogen atom reactions; H+NO2 and H+O3, J. Chem. Soc., Faraday Trans. II 73, 298–309.

    Google Scholar 

  • Crutzen, P. J., 1970, The influence of nitrogen oxides on the atmospheric ozone content, Quart. J. Roy. Meteor. Soc. 96, 320–325.

    Google Scholar 

  • Dahlquist, G., and Bjorck, A., 1974, Numerical Methods, trans. by Ned Anderson, Prentice-Hall, Englewood Cliffs, New Jersey, 573 pp., 1974.

    Google Scholar 

  • Dawson, G. A., 1977, Atmospheric ammonia from undisturbed land, J. Geophys. Res. 82, 3125–3133.

    Google Scholar 

  • Fishman, J. and Crutzen, P., 1977, A numerical study of tropospheric photochemistry using a one-dimensional model, J. Geophys. Res. 82, 5897–5906.

    Google Scholar 

  • Hampson, R. F. (ed), 1973, Survey of photochemical and rate data for twenty-eight reactions of interest in atmospheric chemistry, J. Phys. Chem. Ref. Data 2, 267–312.

    Google Scholar 

  • Hill, A. C., 1971, Vegetation: A sink for atmospheric pollutants, J. Air. Pollut. Control Assoc. 21, 341–346.

    Google Scholar 

  • Husar, R. B., and Holloway, J. M., Sulfur and nitrogen over North American, in Ecological Effects of Acid Deposition, National Swedish Environment Protection Board Report PM 1636, pp. 95–115.

  • JPL, 1983, Chemical Kinetics and Photochemical Data for use in Stratospheric Modeling, JPL Publication 83-62.

  • Johnston, H. S., and Selwyn, G., 1975, New cross sections for the absorption of near ultraviolet radiation by nitrous oxide (N2O), Geophys. Res. Lett. 2, 549.

    Google Scholar 

  • Judeikis, H. S., and Wren, A. G., 1978, Laboratory measurements of NO and NO2 depositions onto soil and cement surfaces, Atmos. Environ. 12, 2315–2319.

    Google Scholar 

  • Kasting, J. F., Holland, H. D., and Pinto, J. P., 1985, Oxidant abundances in rainwater and the evolution of atmospheric oxygen, J. Geophys. Res., in press.

  • Lee, Y. N., and Schwartz, S. E., 1981a, Reaction kinetics of nitrogen dioxide with liquid water at low partial pressure, J. Phys. Chem. 85, 840–848.

    Google Scholar 

  • Lee, Y. N., and Schwartz, S. E., 1981b, Evaluation of the rate of uptake of nitrogen dioxide by atmospheric and surface liquid water, J. Geophys. Res. 86, 11971–11983.

    Google Scholar 

  • Lewis, J. S., Watkins, G. H., Hartman, H., and Prinn, R. G., 1982, Chemical consequences of major impact events on Earth, in Geological Implications of Impacts of Large Asteroids and Comets on Earth, ed. by L. T. Silver and P. H. Schultz, Geol. Soc. of Amer., Sp. Pap. 190, pp. 215–221.

  • Logan, J. A., 1983, Nitrogen oxides in the troposphere: Global and regional budgets, J. Geophys. Res. 88, 10785–10807.

    Google Scholar 

  • Logan, J. A., Prather, M. J., Wofsy, S. C., and McElroy, M. B., 1981, Tropospheric chemistry: A global perspective, J. Geophys. Res. 86, 7210–7254.

    Google Scholar 

  • Loomis, A. G., 1928, Solubilities of gases in water, in International Critical Tables, Vol. III, McGraw-Hill, N.Y., pp. 255–261.

    Google Scholar 

  • Massie, S. T., and Hunten, D. M., 1981, Stratospheric eddy diffusion coefficients from tracer data, J. Geophys. Res. 86, 9859–9868.

    Google Scholar 

  • McClatchey, R. A., Fenn, R. W., Selby, J. E. A., Volz, F. E. and Garing, J. S., 1971, Optic properties of the atmosphere, Tech. Rep., AFCRL-71–0279, Air Force Cambridge Res. Labs., Bedford, MA.

    Google Scholar 

  • McFarland, M., Kley, D., Drummond, J. W., Schmeltekopf, A. L., and Winkler, R.J., 1979, Nitric oxide measurements in the equatorial Pacific region, Geophys, Res. Lett. 6, 605–608.

    Google Scholar 

  • Mount, G. H., Rottman, G. J., and Timothy, J. G., 1978, 1980, The solar spectral irradiance 1200–2550 Å at solar maximum, J. Geophys. Res. 85, 3051–3057, 4271–4274.

    Google Scholar 

  • Noxon, J. F., 1978, 1981, Tropospheric No2, J. Geophys. Res. 83, 3051–3057. (Correction: J. Geophys. Res. 85, 4560–4561.)

    Google Scholar 

  • Noxon, J. F., 1981 NO x in the mid-Pacific troposphere, Geophys. Res. Lett. 8, 1223–1226.

    Google Scholar 

  • O'Keefe J. D., and Ahrens, T. J., 1982, The interaction of the Cretaceous/Tertiary extinction bolide with the atmosphere, ocean, and solid earth, in Geological Implications of Impacts of Large Asteroids and Comets on the Earth, ed. by L. T. Silver and P. H. Schultz, Geol. Soc. of Amer., Sp. Paper 190, pp. 103–120.

  • Pruppacher, H. R., and Klett, J. D., 1978, Micro-physics of Clouds and Precipitation, D. Reidel, Dordrecht.

    Google Scholar 

  • Ratner, M. I., and Walker, J. C. G., 1972, Atmospheric ozone and the history of life, J. Atmos. Sci. 29, 803–808.

    Google Scholar 

  • Rothman, L. S., Goldman, A., Gillis, J. R., Tipping, R. H., Brown, L. R., Margolis, J. S., Maki, A. G., and Young, L. D. G., 1981, AFGL trace gas compilation: 1980 version, Applied Optics 20 1323–1328.

    Google Scholar 

  • Sellers, W. D., 1965, Physical Climatology, Univ. Chicago Press, Chicago.

    Google Scholar 

  • Slinn, W. G. N., Hasse, L., Hicks, B. B., Hogan, A. W., Lal, D., Liss, P. S., Munnich, K. O., Sehmel, G.A., Vittori, O., 1978, Some aspects of the transfer of atmospheric trance constituents past the air-sea interface, Atmos. Environ. 12, 2055–2087.

    Google Scholar 

  • Toon, O. B., Pollack, J. B., Ackerman, T. P., Turco, R. P., McKay, C. P., and Liu, M. S., 1982, Evolution of an impact-generated dust cloud and its effects on the atmosphere, in Geological Implications of Impacts of Large Asteroids and Comets on the Earth, Special Pap. 190, Geol. Soc. of Amer. pp. 187–200.

  • Tuazon, E. C., Atkinson, R., Plum, C. N., Winer, A. M., and Pitts, J. N., 1983, The reaction of gas phase N2O5 with water vapor, Geophys. Res. Lett. 10, 953–956, 1983.

    Google Scholar 

  • Turco, R. P., Toon, O. B., Park, C., Whitten, R. C., Pollack, J. B., and Noerdlinger, P., 1981, Tunguska meteor fall of 1908: Effects on stratospheric ozone, Science 214, 19–23.

    Google Scholar 

  • Turco, R. P., Toon, O. B., Ackerman, T. P., Pollack, J. B., and Sagan, C., 1983, Nuclear winter: Global consequences of multiple nuclear explosions, Science 222, 1283–1292.

    Google Scholar 

  • White, W. H., and Dietz, D., 1984, Does the photochemistry of the troposphere admit more than one steady state?, Nature 309, 242–244.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasting, J.F., Ackerman, T.P. High atmospheric NO x levels and multiple photochemical steady states. J Atmos Chem 3, 321–340 (1985). https://doi.org/10.1007/BF00122522

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00122522

Key words

Navigation