Skip to main content
Log in

Transverse thermal magnetoresistance of potassium

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

We report the results of extensive thermal magnetoresistance measurements on single-crystal and polycrystalline specimens of potassium having residual resistance ratios (RRR) ranging from 1100 to 5300. Measurements were made between 2 and 9 K for magnetic fields up to 1.8 T. The observed thermal magnetoresistance cannot be understood on the basis of either semiclassical theories or from the electrical magnetoresistance and the Wiedemann-Franz law. We do, however, observe a number of interesting relationships between the thermal and electrical magnetoresistances, many of which are not immediately obvious when comparing direct experimental observations. The thermal magnetoresistance W(T, H) is given reasonably well by W(T, H)T = W(T, 0)T + AH + BH 2, where both A and B are temperature-dependent coefficients. Our results show that A = A 0 + A 1 T 3, while B(T) cannot be expressed as any simple power law. A0 is quite dependent upon the RRR, while a 1 is independent of the RRR. We find two very interesting relationships between corresponding coefficients in the electrical and thermal magneto-resistance: (i) the Wiedmann-Franz law relates A 0 to the Kohler slope of the electrical magnetoresistance and (ii) the temperature-dependent portions of the electrical and thermal Kohler slopes are both proportional to the electron-phonon scattering contribution to the corresponding zero-field resistance. The latter provides evidence that inelastic scattering is very important in determining the temperature-dependent linear magnetoresistances. Part, but by no means all, of the quadratic thermal resistance is accounted for by lattice thermal conduction. We have not been successful in generating another mechanism that gives a quadratic field dependence. After subtracting the lattice contribution, the Lorenz ratio is still strongly field dependent, decreasing with increasing field. Based on these observations and additional arguments, our general conclusion is that at least a portion of the anomalous electrical and thermal magneto-resistances is due to intrinsic causes and not inhomogeneities or other macroscopic defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Taub, R. L. Schmidt, B. W. Maxfield, and R. Bowers, Phys. Rev. B 4, 1134 (1971).

    Google Scholar 

  2. I. M. Lifshitz, M. Ya. Azbel and M. I. Kaganov, Zh. Eksp. Teor. Fiz. 30, 200 (1955); Sov. Phys.—JETP 3, 143 (1956).

    Google Scholar 

  3. D. Shoenberg and P. J. Stiles, Proc. Roy. Soc. A 281, 62 (1964).

    Google Scholar 

  4. M. Ya. Azbel, M. I. Kaganov, and I. M. Lifshitz, Zh. Eksp. Teor. Fiz. 31, 63 (1956); Sov. Phys.—JETP 4, 41 (1957).

    Google Scholar 

  5. A. M. Simpson, J. Phys. F 3, 1471 (1973).

    Google Scholar 

  6. J. S. Lass, J. Phys. C 3, 1926 (1970).

    Google Scholar 

  7. B. K. Jones, Phys. Rev. 179, 637 (1969).

    Google Scholar 

  8. D. E. Chimenti and B. W. Maxfield, Phys. Rev. B 7, 3501 (1973).

    Google Scholar 

  9. P. G. Siebenmann and J. Babiskin, Phys. Rev. Lett. 30, 380 (1973).

    Google Scholar 

  10. R. S. Newrock and B. W. Maxfield, to be published.

  11. R. Fletcher and A. J. Friedman, Phys. Rev. B 8, 5381 (1974).

    Google Scholar 

  12. P. A. Penz and T. Koshida, Phys. Rev. 176, 804 (1968).

    Google Scholar 

  13. S. A. Werner, T. K. Hunt and G. W. Ford, Sol. State Comm. 14, 1212 (1974).

    Google Scholar 

  14. J. M. Ziman, Electrons and Phonons (Oxford Press, 1960), p. 520.

  15. A. W. Overhauser, Phys. Rev. 167 (1968); Phys. Rev. Lett. 27, 938 (1971).

    Google Scholar 

  16. P. M. O'Keefe and W. A. Goddard III, Phys. Rev. Lett. 23, 300 (1969).

    Google Scholar 

  17. R. A. Young, Phys. Rev. 175, 813 (1968).

    Google Scholar 

  18. C. Herring, J. Appl. Phys. 31, 1939 (1960).

    Google Scholar 

  19. L. M. Falicov and H. Smith, Phys. Rev. Lett. 29, 124 (1972).

    Google Scholar 

  20. J. W. Ekin and B. W. Maxfield, Phys. Rev. B 4, 4215 (1971).

    Google Scholar 

  21. J. W. Ekin, Phys. Rev. B 6, 371 (1972).

    Google Scholar 

  22. R. S. Newrock and B. W. Maxfield, Phys. Rev. B 7, 1783 (1973).

    Google Scholar 

  23. R. Fletcher, Phys. Rev. Lett. 32, 930 (1974).

    Google Scholar 

  24. C. H. Stephan and B. W. Maxfield, Phys. Rev. B 6, 2893 (1972).

    Google Scholar 

  25. B. W. Maxfield and J. R. Merrill, Rev. Sci. Inst. 36, 1083 (1965).

    Google Scholar 

  26. C. P. Bean, R. W. De Blois, and L. B. Nesbitt, J. Appl. Phys. 30, 1976 (1959).

    Google Scholar 

  27. R. S. Newrock and B. W. Maxfield, Sol. State Comm. 13, 927 (1973), and in Low Tem- perature Physics—LT 13 (Plenum, New York, 1974), Vol. IV, p. 343.

    Google Scholar 

  28. F. C. Schwerer and J. Silcox, J. Appl. Phys. 39, 2047 (1968).

    Google Scholar 

  29. J. H. Ziman, Electrons and Phonons (Oxford Univ. Press, London, 1960).

    Google Scholar 

  30. H. Taub, in Proceedings of the International Conference on Electron Lifetimes in Metals, July 1974, Eugene, Oregon, to be published.

  31. J. Babiskin and P. G. Siebenmann, Phys. Rev. Lett. 27, 1361 (1971).

    Google Scholar 

  32. P. A. Penz and R. Bowers, Phys. Rev. 172, 991 (1968).

    Google Scholar 

  33. H. Taub, private communication.

  34. H. Taub, Ph.D. Thesis, Cornell University (1971), unpublished.

  35. R. Fletcher, J. Phys. F 4, 1155 (1974).

    Google Scholar 

  36. P. G. Klemens, Solid State Physics, Vol. 7 (1958); P. Carruthers, Rev. Mod. Phys. 33, 92 (1961).

  37. M. A. Archibald, J. E. Dunick, and M. H. Jericho, Phys. Rev. 153, 786 (1967).

    Google Scholar 

  38. D. K. Wagner, Phys. Rev. B 5, 336 (1972).

    Google Scholar 

  39. R. J. Balcomb, Proc. Roy. Soc. (London) A 275, 113 (1963).

    Google Scholar 

  40. J. C. Garland and R. Bowers, Phys. Rev. 188, 1121 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the U.S. Energy Research and Development Administration under contract no. AT(11-1)3150, technical report no. COO-3150-36. This work also benefited from use of the facilities provided by the Materials Science Center, Cornell University, supported by the National Science Foundation, grant no. GH-33637.

Supported by the University of Cincinnati Research Council during the preparation of this report.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Newrock, R.S., Maxfield, B.W. Transverse thermal magnetoresistance of potassium. J Low Temp Phys 23, 119–142 (1976). https://doi.org/10.1007/BF00117247

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00117247

Keywords

Navigation