Skip to main content
Log in

Embryonal central neuroepithelial tumors: Current concepts and future challenges

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Summary

While the embryonal central neuroepithelial tumors present complex conceptual and clinical problems, advances in cell type identification by special neurohistological, immunohisto- and immunocytochemical techniques have permitted discrimination of distinct cytomorphogenetic entities. These are based in part on their resemblance to the normal phases of neurocytogenesis. Four of these tumors, medulloepithelioma, desmoplastic infantile ganglioglioma, pineoblastoma and medulloblastoma, are designated as multipotential in light of their capacity to undergo divergent differentiation. Cytomorphogenetic, clinical and experimental data implicate fetal neural cell targets for transformation and raise the possibility that aberrant developmental regulatory mechanisms may contribute to the biologic behavior of these tumors. Growth factors and some neuroregulatory neurotransmitters (such as serotonin) are known to act as modulators of normal neuromorphogenesis. They could play a regulatory role in central neuroepithelial tumors on the hypothesis that the aberrant behavior of the embryonal neoplasms could either be modified by fuctional receptor responses or result from abnormal receptor responses to these substances. Future challenges include 1) the definition of new cytomorphogenetic entities and subgroups of the currently defined forms of embryonal CNS tumors based on the presence of specific growth factors and neuroregulatory neurotransmitters, or their receptors, 2) the characterization of neoplastic receptor responses mediating any modulatory role of the presently known growth factors or neuroregulatory neurotransmitters on the growth and maturation potential of the embryonal central neuroepithelial tumors and 3) the further definition of developmental, stage-specific modulators that might be operative in these tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rubinstein LJ: Cytogenesis and differentiation of primitive central neuroepithelial tumors. J Neuropathol Exp Neurol 31: 7–26, 1972

    Google Scholar 

  2. Rubinstein LJ, Herman MM: Recent advances in human neuro-oncology. In: Smith WT, Cavanagh JB (ed) Recent advances in neuropathology. Churchill Livingstone, Edinburgh, London and New York, 1979, pp 179–223

    Google Scholar 

  3. Rubinstein LJ: Embryonal central neuroepithelial tumors and their differentiating potential. A cytogenetic view of a complex neuro-oncological problem. J Neurosurg 62: 795–805, 1985

    Google Scholar 

  4. Rorke LB: The cerebellar medulloblastoma and its relationship to primitive neuroectodermal tumors. J Neuropathol Exp Neurol 42: 1–15, 1983

    Google Scholar 

  5. Bonnin JM, Rubinstein LJ: Immunohistochemistry of central nervous system tumors. Its contributions to neurosurgical diagnosis. J Neurosurg 60: 1121–1133, 1984

    Google Scholar 

  6. Rubinstein LJ, Herman MM, VandenBerg SR: Differentiation and anaplasia in central neuroepithelial tumors. Prog Exp Tumor Res 27: 32–48, 1984

    Google Scholar 

  7. Stewart AM, Lennox EL, Sanders BM: Group characteristics of children with cerebral and spinal cord tumours. Br J Cancer 28: 568–574, 1973

    Google Scholar 

  8. Hirakawa K, Suzuki K, Ueda S, Handa J: Fetal origin of the medulloblastoma: evidence from growth analysis of two cases. Acta Neuropathol 70: 227–234, 1986

    Google Scholar 

  9. VandenBerg SR, May EE, Rubinstein LJ, Herman MM, Perentes E, Vinores SA, Collins VP, Park TS: Desmoplastic supratentorial neuroepithelial tumors of infancy with divergent differentiation potential (‘desmoplastic infantile gangliogliomas’). A report on 11 cases of a distinctive embryonal tumor with favorable prognosis. J Neurosurg, in press

  10. Swenberg JA: Chemical- and virus-induced brain tumors. Modern concepts in brain tumor therapy: Laboratory and clinical investigations. Natl Cancer Inst Monogr 46: 3–10, 1977

    Google Scholar 

  11. Rajewsky MF: Chemical carcinogenesis in the developing nervous system. In: Santi L, Zardi L (ed) Theories and models in cellular transformation. Academic Press, London, 1985, pp 156–171

    Google Scholar 

  12. Kleihues P, Rajewsky MF: Chemical neuro-oncogenesis: role of structural DNA modifications, DNA repair and neural target cell population. Prog Exp Tumor Res 27: 1–16, 1984

    Google Scholar 

  13. Lane JC, Klintworth GK: A study of astrocytes in retinoblastomas using the immunoperoxidase technique and antibodies to glial fibrillary acidic protein. Am J Ophthalmol 95: 197–207, 1983

    Google Scholar 

  14. Albert DM: Glial cell component in retinoblastoma. Exp Eye Res 40: 647–659, 1985

    Google Scholar 

  15. Smith PJ, Ablett GA, Sheridan JW: Histopathological and tissue culture studies of a melanizing cell line derived from a retinoblastoma. Pathol 15: 431–435, 1983

    Google Scholar 

  16. Kyritsis AP, Tsokos M, Triche TJ, Chader GJ: Retinolastona-origin from a primitive neuroectodermal cell? Nature 307: 471–473, 1984

    Google Scholar 

  17. Tsokos M, Kyritsis AP, Chader GJ, Triche TJ: Differentiation of human retinoblastoma in vitro into cell types with characteristics observed in embryonal or mature retina. Am J Pathol 123: 542–552, 1986

    Google Scholar 

  18. Jacobson M: Developmental Neurobiology. 2nd Ed. Plenum, New York, 1978, pp 76–89

    Google Scholar 

  19. Scott RE, WilleJr JJ, Wier ML: Mechanisms for the initiation and promotion of carcinogenesis: a review and a new concept. Mayo Clin Proc 59: 107–117, 1984

    Google Scholar 

  20. KnudsonJr AG: Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 68: 820–823, 1971

    Google Scholar 

  21. Cavenee WK, Murphree L, Shull MM, Benedict WF, Sparkes RS, Kock E, Nordenskjold M: Prediction of familial predisposition to retinoblastoma. N Eng J Med 314: 1247–1250, 1986

    Google Scholar 

  22. Gilbert F: Retinoblastoma and cancer genetics. N Engl J Med 314: 1248–1250, 1986

    Google Scholar 

  23. Brodeur GM, Green AA, Hayes FA, Williams KJ, Williams DL, Tsiatis AA. Cytogenetic features of human neuroblastomas and cell lines. Cancer Res 41: 4678–4686, 1981

    Google Scholar 

  24. Barsoum J, Varshavsky A: Mitogenic hormones and tumor promoters greatly increase the incidence of colonyforming cells bearing amplified dihydrofolate reductase genes. Proc Natl Acad Sci USA 80: 5330–5334, 1983

    Google Scholar 

  25. Kikkawa U, Kaibuchi K, Castagna M, Yamanishi J, Sano K, Tanaka Y, Miyake R, Takai Y, Nishizuka Y: Protein phosphorylation and mechanism of action of tumor-promoting phorbol esters. In: Greengard P. et al. (ed) Advances in cyclic nucleotide and protein phosphorylation research. Raven Press, New York, 1984, pp 437–442

    Google Scholar 

  26. Burgess SK, Sayoun N, Blanchard SG, LeVineIII H, Chang K-J, Cuatrecasas P: Phorbol ester receptor and protein kinase C in primary neuronal cultures: development and stimulation of endogenous phosphorylation. J Cell Biol 102: 312–319, 1986

    Google Scholar 

  27. Kramer CM, Sando JJ: Substrates for protein kinase C in cytosol of EL4 mouse thymoma cells. Cancer Res 46: 3040–3045, 1986

    Google Scholar 

  28. Hama T, Huang K-P, Guroff G: Protein kinase C as a component of a nerve growth factor-sensitive phosphorylation system in PC12 cells. Proc Natl Acad Sci USA 83: 2353–2357, 1986

    Google Scholar 

  29. Bechade C, Calothy G, Pessac B: Induction of proliferation or transformation of neuroretina cells by the mil and myc viral oncogenes. Nature 316: 559–562, 1985

    Google Scholar 

  30. Walker PR, Sikorska M: Modulation of the sensitivity of chromatin to exogenous nucleases: implications for the apparent increased sensitivity of transcriptionally active genes. Biochem 25: 3839–3845, 1986

    Google Scholar 

  31. Schimke RT, Sherwood SW, Hill AB, Johnston RN: Overreplication and recombination of DNA in higher eukaryotes: potential consequences and biological implications. Proc Natl Acad Sci USA 83: 2157–2161, 1986

    Google Scholar 

  32. Madhani H, Bohr VA, Hanawalt PC: Differential DNA repair in transcriptionally active and inactive proto-oncogenes: c-abl and c-mos. Cell 45: 417–423, 1986

    Google Scholar 

  33. Greene LA, Shooter EM: The nerve growth factor: biochemistry, synthesis, and mechanism of action. Ann Rev Neurosci 3: 353–402, 1980

    Google Scholar 

  34. Martinez HJ, Dreyfus CF, Jonakait M, Black IB: Nerve growth factor promotes cholinergic development in brain striatal cultures. Proc Natl Acad Sci USA 82: 7777–7781, 1985

    Google Scholar 

  35. Shelton DL, Reichardt LF: Studies on the expression of the β nerve growth factor (NGF) gene in the central nervous system: level and regional distribution of NGF mRNA suggest that NGF functions as a trophic factor for several distinct populations of neurons. Proc Natl Acad Sci USA 83: 2714–2718, 1986

    Google Scholar 

  36. Vinores SA, Perez-Polo JR: Nerve growth factor and neural oncology. J Neurosci Res 9: 81–100, 1983

    Google Scholar 

  37. Rakowicz-Szulczynska EM, Rodeck U, Herlyn M, Koprowski H: Chromatin binding of epidermal growth factor, nerve growth factor, and platelet-derived growth factor in cells bearing the appropriate surface receptors. Proc Natl Acad Sci USA 83: 3728–3732, 1986

    Google Scholar 

  38. Gehring WJ: Homeotic genes, the hemeo box, and the genetic control of development. In: Cold Spring Harbor symposia on quantitative biology. Volume L. Molecular biology of development. Cold Spring Harbor Laboratory 1985, pp 243–251

  39. Boncinelli E, Simeone A. La Volpe A, Faiella A, Fidanza V, Acampora D, Scotto L: Human cDNA clones containing homeo box sequences. In: Cold Spring Harbor symposia on quantitative biology. Volume L. Molecular biology of development. Cold Spring Harbor Laboratory, 1985, pp 301–305

  40. Ruddle FH, Hart CP, Awgulewitsch A, Fainsod A, Utset M, Dalton D, Kerk N, Rabin M, Ferguson-Smith A, Fienberg A, McGinnis W: Mammalian homeo box genes. Volume L. Molecular biology of development. Cold Spring Harbor Laboratory, 1985, pp 277–284

  41. Joyner A, Hauser C, Kornberg T, Tjian R, Martin G: Structure and expression of two classes of mammalian homeo-box-containing genes. In: Cold Spring Harbor symposia on quantitative biology. Volume L. Molecular biology of development. Cold Spring Harbor Laboratory, 1985, pp 291–300

  42. Colberg-Poley AM, Voss SD, Gruss P: Expression of murine genes containing homeo box sequences during visceral and parietal endoderm differentation of embryonal carcinoma stem cells. In: Cold Spring Harbor symposia on quantitative biology. Volume L. Molecular biology of development. Cold Spring Harbor Laboratory, 1985, pp 285–295

  43. Colberg-Poley AM, Voss SD, Chowdhury K, Stewart CL, Wagner EF, Gruss P: Clustered homeo boxes are differentially expressed during murine development. Cell 43: 39–45, 1985

    Google Scholar 

  44. Colberg-Poley AM, Voss SD, Chowdhury K, Gruss P: Structural analysis of murine genes containing homoe box sequences and their expression in embryonal carcinoma cells. Nature 314: 713–718, 1985

    Google Scholar 

  45. Simeone A, Mavilio F, Bottero L, Giampaolo A, Russo G, Faiella A, Boncinelli E, Peschle C: A human homoeo box gene specifically expressed in spinal cord during embryonic development. Nature 320: 763–765, 1986

    Google Scholar 

  46. Wier ML, Scott RE: Regulation of the terminal event in cellular differentiation: biological mechanisms of the loss of proliferative potential. J Cell Biol 102: 1955–1964, 1986

    Google Scholar 

  47. Sparkes RS, Murphree AL, Lingua RW, Sparkes MC, Field LL, Funderburk SJ, Benedict WF: Gene for hereditary retinoblastoma assigned to human chromosome 13 by linkage to esterase D. Science 219: 971–973, 1983

    Google Scholar 

  48. Sparkes RS, Sparkes MC, Wilson MG, Towner JW, Benedict W, Murphree AL, Yunis JJ: Regional assignment of genes for human esterase D and retinoblastoma to chromosome band 13q14. Science 208: 1042–1044, 1980

    Google Scholar 

  49. Gallie BL, Phillips RA: Retinoblastoma: a model of oncogenesis. Ophthalmol 91: 666–672, 1984

    Google Scholar 

  50. Hungerford JL: Recent advances in the understanding of retinoblastoma. Trans Ophthalmol Soc UK 104: 832–835, 1985

    Google Scholar 

  51. KnudsonJr AG: Hereditary cancer, oncogenes, and antioncogenes. Cancer Res 45: 1437–1443, 1985

    Google Scholar 

  52. Muller R, Verma IM: Expression of cellular oncogenes. Curr Top Microbiol Immunol 112: 73–115, 1984

    Google Scholar 

  53. Ratner L, Josephs SF, Wong-Staal F: Oncogenes: their role in neoplastic transformation. Ann Rev Microbiol 39: 419–449, 1985

    Google Scholar 

  54. Bishop JM: Viral oncogenes. Cell 42: 23–38, 1985

    Google Scholar 

  55. Comings DE: A general theory of carcinogenesis. Proc Natl Acad Sci USA 70: 3324–3328, 1973

    Google Scholar 

  56. McKinnon RD, Shinnick TM, Sutcliffe JG: The neuronal identifier element is a cis-acting positive regulator of gene expression. Proc Natl Acad Sci USA 83: 3751–3755, 1986

    Google Scholar 

  57. Brandi ML, Aurbach GD, Fitzpatrick LA, Quarto R, Spiegel AM, Bliziotes MM, Norton JA, Doppman JL, Marx SJ: Parathyroid mitogenic activity in plasma from patients with familial multiple endocrine neoplasia type I. N Engl J Med 314: 1287–1293, 1986

    Google Scholar 

  58. Schimke RN: Multiple endocrine neoplasia. Search for the oncogenic trigger. N Engl J Med 314: 1315–1316, 1986

    Google Scholar 

  59. Knudson AG, Meadows AT: Regression of neuroblastoma IV-S: a genetic hypothesis. New Engl J Med 302: 1254–1255, 1980

    Google Scholar 

  60. Mattson MEK, Enberg G, Ruusala A-I, Hall K, Pahlman S: Mitogenic response of human SH-SY5Y neuroblastoma cells to insulin-like growth factor I and II is dependent on the stage of differentiation. J Cell Biol 102: 1949–1954, 1986

    Google Scholar 

  61. Nicoletti F, Iadarola MJ, Wroblewski JT, Costa E: Excitatory amino acid recognition sites coupled with inositol phospholipid metabolism: developmental changes and interaction with 359–1. Proc Natl Acad Sci USA 83: 1931–1935, 1986

    Google Scholar 

  62. Large TH, Rauh JJ, De Mello FG, Klein WL: Two molecular weight forms of muscarinic acetylcholine receptors in the avian central nervous system: switch in predominant form during differentiation of synapses. Proc Natl Acad Sci USA 82: 8785–8789, 1985

    Google Scholar 

  63. Large TH, Cho NJ, De Mello FG, Klein WL: Molecular alteration of a muscarinic acetylcholine receptor system during synaptogenesis. J Biol Chem 260: 260: 8873–8881, 1985

    Google Scholar 

  64. Tardy M, Costa MF, Fages C, Bardakdjian J, Gonnard P: Uptake and binding of serotonin by primary cultures of mouse astrocytes. Dev Neurosci 5: 19–26, 1982

    Google Scholar 

  65. Nelson DL, Herbet A, Adrien J, Bockaert J, Michel H: Serotonin-sensitive adenylate cyclase and [3H]serotonin binding sites in the CNS of the rat-II. Respective regional and subcellular distributions and ontogenetic developments. Biochem Pharmacol 29: 2455–2463, 1980

    Google Scholar 

  66. Bockaert J, Nelson DL, Herbet A, Adrien J, Enjalbert A, Hamon M: Serotonin-receptors coupled with an adenylate cyclase in the rat brain: non-identity with 3H-5-HT binding sites. In: Haber B, Gabay S, Issidorides MR, Alivisatos SGA (ed) Serotonin: current aspects of neurochemistry and function. Plenum Press, New York and London, 1981, pp 327–345

    Google Scholar 

  67. Leysen J: Problems in in vitro receptor binding studies and identification and role of serotonin receptor sites. Neuropharmacol 23: 247–254, 1984

    Google Scholar 

  68. Podesta AH, Mullins J, Pierce GB, Wells RS: The neurula stage mouse embryo in control of neuroblastoma. Proc Natl Acad Sci USA 81: 7608–7611, 1984

    Google Scholar 

  69. Mayer TC: Interactions between normal and pigment cell populations mutant at the dominant-spotting (W) and steel (Sl) loci in the mouse. J Exp Zool 210: 81–88, 1979

    Google Scholar 

  70. Poole TW, Silvers WK: Capacity of adult steel (Sl/Sld) and dominant spotting (W/Wv) mouse skin to support melanogenesis. Dev Biol 72: 398–400, 1979

    Google Scholar 

  71. Bennett D: The T-locus of the mouse. Cell 6: 441–454, 1975

    Google Scholar 

  72. Gluecksohn-Waelsch S: Genetic control of differentiation. In: Silver LM, Martin GR, Strickland S (ed) Teratoma stem cells. Cold Spring Harbor Conference on Cell Proliferation, Volume 10, 1983, pp 3–13

  73. Artzt K, Bennett D: A genetically caused embryonal ectodermal tumor in the mouse. J Nat Cancer Inst 48: 141–158, 1972

    Google Scholar 

  74. Zimmerman KA, Yancopoulos GD, Collum RG, Smith RK, Kohl NE, Denis KA, Nau MM, Witte ON, Toran-Allerand D, Gee CE, Minna JD, Alt FW: Differential expression of myc family genes during murine development. Nature 319: 780–783, 1986

    Google Scholar 

  75. Zarbl H, Sukumar S, Arthur AV, Martin-Zanca D, Barbacid M: Direct mutagenesis of Ha-ras-1 oncogenes by N-nitroso-N-methylurea during initiation of mammary carcinogenesis in rats. Nature 315: 382–385, 1985

    Google Scholar 

  76. Guerrero I, Villasante A, Corces V, Pellicer A: Loss of the normal N-ras allele in a mouse thymic lymphoma induced by a chemical carcinogen. Proc Natl Acad Sci USA 82: 7810–7814, 1985

    Google Scholar 

  77. Quintanilla M, Brown K, Ramsden M, Balmain A: Carcinogen-specific mutation and amplification of Ha-ras during mouse skin carcinogenesis. Nature 322: 78–80, 1986

    Google Scholar 

  78. Brown K, Quintanilla M, Ramsden M, Kerr IB, Young S, Balmain A: V-ras genes from Harvey and BALB murine sarcoma viruses can act as initiators of two-stage mouse skin carcinogenesis. Cell 46: 447–456, 1986

    Google Scholar 

  79. Levy JB, Iba H, Hanafusa H: Activation of the transforming potential of p60c-src by a single amino acid change. Proc Natl Acad Sci USA 83: 4228–4232, 1986

    Google Scholar 

  80. Bargmann CI, Hung M-C, Weinberg RA: Multiple independent activations of the neu oncogene by a point mutation altering the transmembrane domain of p185. Cell 45: 649–657, 1986

    Google Scholar 

  81. Park M, Dean M, Cooper CS, Schmidt M, O'Brien SJ, Blair DG, Vande Woude GF: Mechanism of met oncogene activation. Cell 45: 895–904, 1986

    Google Scholar 

  82. Alema S, Casalbore P, Agostini E, Tato F: Differentiation of PC12 phaeochromocytoma cells induced by v-src oncogene. Nature 316: 557–559, 1985

    Google Scholar 

  83. Hagag N, Halegoua S, Viola M: Inhibition of growth factor-induced differentiation of PC12 cells by microinjection of antibody to ras p21. Nature 319: 680–682, 1986

    Google Scholar 

  84. Hunter T, Cooper JA: Tyrosine protein kinases and their substrates: an overview. In: Greengard P, Robinson GA, Paoletti R, Nicosia S (ed) Advances in cyclic nucleotide and protein phosphorylation research, Volume 17. Raven Press, New York, 1984, pp 443–455

    Google Scholar 

  85. Dasgupta JD, Swarup G, Garbers DL: Tyrosine protein kinase activity in normal rat tissues: brain. In: Greengard P, Robison GA, Paoletti R, Nicosia S (ed) Advances in cyclic nucleotide and protein phosphorylation research, Volume 17. Raven Press, New York, 1984, pp 461–470.

    Google Scholar 

  86. Anderson WB, Estival A, Tapiovaara H, Gopalakrishna R: Altered subcellular distribution of protein kinase C (a phorbol ester receptor). Possible role in tumor promotion and the regulation of cell growth: relationship to changes in adenylate cyclase activity. In: Greengard P, Robison GA, Paoletti R, Nicosia S (ed) Advances in cyclic nucleotide and protein phosphorylation res 19: 287–306, 1985

  87. Greig RG, Koestler TP, Trainer DL, Corwin SP, Miles L, Kline T, Sweet R, Yokoyama S, Poste G: Tumorigenic and metastatic properties of ‘normal’ and ras-transfected NIH/3T3 cells. Proc Natl Acad Sci USA 82: 3698–3701, 1985

    Google Scholar 

  88. Gateff E: Malignant neoplasms of genetic origin in Drosophila melanogaster. Science 200: 1448–1459, 1978

    Google Scholar 

  89. Meyers MB, Merluzzi VJ, Spengler BA, Biedler JL: Epidermal growth factor receptor is increased in multidrug-resistant Chinese hamster and mouse tumor cells. Proc Natl Acad Sci USA 83: 5521–5525, 1986

    Google Scholar 

  90. Davies AM, Thoenen H, Barde Y-A. Different factors from the central nervous system and periphery regulate the survival of sensory neurones. Nature 319: 497–499, 1986

    Google Scholar 

  91. JohnsonJr EM, Yip HK: Central nervous system and peripheral nerve growth factor provide trophic support critical to mature sensory neuronal survival. Nature 314: 751–752, 1985

    Google Scholar 

  92. Rothman TP, Specht LA, Gershon MD, Joh TH, Teitelman G, Pickel VM, Reis DJ: Catecholamine biosynthetic enzymes are expressed in replicating cells of the peripheral but not the central nervous system. Proc Natl Acad Sci USA 77: 6221–6225, 1980

    Google Scholar 

  93. Anderson DJ, Stein R, Axel R: Gene expression in differentiating and transdifferentiating neural crest cells. In: Cold Spring Harbor Symposia on quantitative biology, Volume L, Molecular Biology of Development. Cold Spring Harbor Laboratory, 1985, pp 855–863

  94. Antoniades HN, Owen AJ: Growth factors and regulation of cell growth. Ann Rev Med 33: 445–463, 1982

    Google Scholar 

  95. Guilian D, Allen RL, Baker TJ, Tomozawa Y: Brain peptides and glial growth. I. Glia-promoting factors as regulators of gliogenesis in the developing and injured central nervous system. J Cell Biol 102: 803–811, 1986

    Google Scholar 

  96. Giulian D, Young DG: Brain peptides and glial growth. II. Identification of cells that secrete glia-promoting factors. J Cell Biol 102: 812–820, 1986

    Google Scholar 

  97. Lemke GE, Brockes JP: Identification and purification of glial growth factor. J Neurosci 4: 75–83, 1984

    Google Scholar 

  98. Lim R, Nakagawa S, Arnason BG, Turriff DE: Glia maturation factor promotes contact inhibition in cancer cells. Proc Natl Acad Sci USA 78: 4373–4377, 1981

    Google Scholar 

  99. Lim R, Miller JF, Hicklin DJ, Andresen AA: Purification of bovine glia maturation factor and characterization with monoclonal antibody. Biochem 24: 8070–8074, 1985

    Google Scholar 

  100. Martinez HJ, Dreyfus CF, Jonakait GM, Black IB: Nerve growth factor promotes cholinergic development in brain striatal cultures. Proc Natl Acad Sci USA 82: 7777–7781, 1985

    Google Scholar 

  101. Shelton DL, Reichardt LF: Studies on the expression of the β-nerve growth factor (NGF) gene in the central nervous system: level and regional distribution of NGF mRNA suggest that NGF functions as a trophic factor for several distinct populations of neurons. Proc Natl Acad Sci USA 83: 2714–2718, 1986

    Google Scholar 

  102. Whittemore SR, Ebendal T, Larkfors L, Olson L, Seiger A, Stromberg I, Persson H: Developmental and regional expression of β-nerve growth factor messenger RNA and protein in the rat central nervous system. Proc Natl Acad Sci USA 83: 817–821, 1986

    Google Scholar 

  103. Taniuchi M, Schweitzer JB, JohnsonJr EM: Nerve growth factor receptor molecules in rat brain. Proc Natl Acad Sci USA 83: 1950–1954, 1986

    Google Scholar 

  104. Richter-Landsberg C, Jastorff B: The role of cAMP in nerve growth factor-promoted neurite outgrowth in PC12 cells. J Cell Biol 102: 821–829, 1986

    Google Scholar 

  105. Traynor AE, Schubert D, Allen WR: Alterations of lipid metabolism in response to nerve growth factor. J Neurochem 39: 1677–1683, 1982

    Google Scholar 

  106. Lillien LE, Claude P: Nerve growth factor is a mitogen for cultured chromaffin cells. Nature 317: 632–634, 1985

    Google Scholar 

  107. Friedlander DR, Grumet M, Edelman GM: Nerve growth factor enhances expression of neuron-glia cell adhesion molecule in PC12 cells. J Cell Biol 102: 413–419, 1986

    Google Scholar 

  108. Kruijer W, Schubert D, Verma IM: Induction of the proto-oncogene fos by nerve growth factor. Proc Natl Acad Sci USA 82: 7330–7334, 1985

    Google Scholar 

  109. Milbrandt J: Nerve growth factor rapidly induces c-fos mRNA in PC12 rat pheochromocytoma cells. Proc Natl Acad Sci USA 83: 4789–4793, 1986

    Google Scholar 

  110. Meyer WJ, Schochet SS, Perez-Polo JR, Werrbach-Perez K, Davis A, Haggard ME: Cerebral neuroblastoma with elevated nerve growth factor. Bull Cancer 67: 333–336, 1980

    Google Scholar 

  111. Downward J, Yarden Y, Mayes E, Scrace G, Totty N, Stockwell P, Ullrich A, Schlessinger J, Waterfield MD: Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences. Nature 307: 521–527, 1984

    Google Scholar 

  112. Yamamoto T, Ikawa S, Akiyama T, Semba K, Nomura N, Miyajima N, Saito T, Toyoshima K: Similarity of protein encoded by the human c-erb-B-2- gene to epidermal growth factor receptor. Nature 319: 230–234, 1986

    Google Scholar 

  113. Walicke P, Cowan WM, Ueno N, Baird A, Guillemin R: Fibroblast growth factor promotes survival of dissociated hippocampal neurons and enhances neurite extension. Proc Natl Acad Sci USA 83: 3012–3016, 1986

    Google Scholar 

  114. Lauder JM, Krebs H: Serotonin as a differentiation signal in early neurogenesis. Dev Neurosci 1: 15–30, 1978

    Google Scholar 

  115. Felten D, Hallman H, Jonsson G: Evidence for a neurotrophic role of noradrenaline neurons in the postnatal development of rat cerebral cortex. J Neurocytol 11: 119–135, 1982

    Google Scholar 

  116. Lauder JM, Wallace JA, Krebs H: Roles for serotonin in neurogenesis. In: Haber B, Gabay S, Issidorides MR, Alivesatos SGA (ed) Serotonin: current aspects of neurochemistry and function. Plenum Press, New York, 1981, pp 447–506

    Google Scholar 

  117. Schlumpf M, Lichtensteiger W, Shoemaker WJ, Bloom FE: Fetal monoamine systems: early stages and cortical projections. In: Parvez H, Parvez S (ed) Biogenic amines in development. Elsevier/North Holland Biomedical Press, New York, 1980, pp 567–590

    Google Scholar 

  118. Sims TJ: The development of monoamine-containing neurons in the brain and spinal cord of the salamander, Ambystoma mexicanum. J Comp Neurol 173: 319–336, 1975

    Google Scholar 

  119. LawrenceJr IE, Burden HW: Catecholamines and morphogenesis of the chick neural tube and notochord. Am J Anat 137: 199–208, 1973

    Google Scholar 

  120. Newgreen DF, Allan IJ, Young HM, Southwell BR: Accumulation of exogenous catecholamines in the neural tube and non-neural tissues of the early fowl embryo. Correlation with morphogenetic movements. Wilhelm Roux's Archiv 190: 320–330, 1981

    Google Scholar 

  121. Kirby ML, Gilmore SA: A fluorescence study on the ability of the notochord to synthesize and store catecholamines in early chick embryos. Anat Rec 173: 469–478, 1972

    Google Scholar 

  122. Wallace JA: Localization of serotonin uptake and synthesis within the early chick embryo. (Abstract) Anat Rec 193: 713a, 1979

  123. Jacobson M: Developmental Neurobiology. 2nd Ed. Plenum, New York, 1978, pp 76–89

    Google Scholar 

  124. Black IB: Stages of neurotransmitter development in autonomic neurons. Science 215: 1198–1204, 1982

    Google Scholar 

  125. Teitelman G, Jaeger CB, Albert V, Joh TH, Reis DJ: Expression of amino acid decarboxylase in proliferating cells of the neural tube and notochord of developing rat embryo. J Neurosci 3: 1379–1388, 1983

    Google Scholar 

  126. Boulton AA, Juorio AV: Brain trace amines. In: Lajtha A (ed) Handbook of neurochemistry. Volume 1, second edition. Plenum Press, New York, 1982, pp 189–221

    Google Scholar 

  127. Jones RSG: Tryptamine: a neuromodulator or neurotransmitter in mammalian brain? Progr Neurobiol 19: 117–139, 1982

    Google Scholar 

  128. Buznikov GA, Shmukler YB: Possible role of ‘prenervous’ neurotransmitters in cellular interactions of early embryogenesis: a hypothesis. Neurochem Res 6: 55–68, 1981

    Google Scholar 

  129. Manukhin BN, Volina EV, Markova LN, Rakic L, Buznikov GA: Biogenic monoamines in early embryos of sea urchins. Dev Neurosci 4: 322–328, 1981

    Google Scholar 

  130. Toneby M: Functional aspects of 5-hydroxytryptamine in early embryogenesis of the sea urchin Paracentrotus lividus. Wilhelm Roux's Archives 181: 247–259, 1977

    Google Scholar 

  131. Palen K, Thorneby L, Emanuelsson H: Effects of serotonin and serotonin antagonists on chick embryogenesis. Wilhelm Roux's Archives 187: 89–103, 1979

    Google Scholar 

  132. Benitez HH, Murray M, Woolley DW: Effects of serotonin and certain of its antagonists upon oligodendroglial cells in vitro (Abstract) In: Proc 2nd Intern Congr Neuropathol, Part II, London, 1955, p 423

  133. Small DH, Wuthman RJ: Serotonin binds specifically and saturably to an actin-like protein isolated from rat brain synaptosomes. Proc Natl Acad Sci USA 81: 959–963, 1984

    Google Scholar 

  134. Olson L, Seiger A: Early prenatal ontogeny of central monoamine neurons in the rat: fluorescence histochemical observations. Z Anat Entw Gesch 137: 301–316, 1972

    Google Scholar 

  135. Lidov HGW, Molliver ME: Immunohistochemical study of the development of serotonergic neurons in the rat CNS. Brain Res Bull 9: 559–604, 1982

    Google Scholar 

  136. Lauder JM, Wallace JA, Krebs H, Petrusz P, McCarthy K: In vivo and in vitro development of serotonergic neurons. Brain Res Bull 9: 605–625, 1982

    Google Scholar 

  137. SladekJr JR, Tabakoff B, Garver D: Certain biochemical correlates in intense serotonin histofluorescence in the brain stem of the neonatal monkey. Brain Res 67: 363–371, 1974

    Google Scholar 

  138. Whitaker-Azmitia PM, Azmitia EC: Autoregulation of fetal serotonergic neuronal development: role of high affinity serotonin receptors. Neurosci Letters 67: 307–312, 1986

    Google Scholar 

  139. Patel AJ, Bendek G, Balazs R, Lewis PD: Effect of reserpine on cell proliferation in the developing rat brain: a biochemical study. Brain Res 129: 283–297, 1977.

    Google Scholar 

  140. Lewis PD, Patel AJ, Bendek G, Balazs R: Effect of reserpine on cell proliferation in the developing rat brain: a quantitative histological study. Brain Res 129: 299–308, 1977

    Google Scholar 

  141. Nemecek GM, Coughlin SR, Handley DA, Moskowitz MA: Stimulation of aortic smooth muscle cell mitogenesis by serotonin. Proc Natl Acad Sci USA 83: 674–678, 1986

    Google Scholar 

  142. Walker RF, Cooper RL: Synergistic effects of estrogen and serotonin-receptor agonists on the development of pituitary tumors in aging rats. Neurobiol Aging 6: 107–111, 1985

    Google Scholar 

  143. Haydon PG, McCobb DP, Kater SB: Serotonin selectively inhibits growth cone motility and synaptogenesis of specific identified neurons. Nature 313: 561–564, 1984

    Google Scholar 

  144. Chumasov EI, Chubakov AR, Konovalov GV, Gromova EA: Effect of serotonin on growth and differentiation of hippocampal cells in culture. Neurosci Behav Physiol 10: 125–131, 1980

    Google Scholar 

  145. Hokin MR: Effects of dopamine, Gamma-aminobutyric acid and 5-hydroxytryptamine on incorporation of 32P into phosphatides in slices from the guinea pig brain. J Neurochem 17: 357–364, 1970

    Google Scholar 

  146. Abdel-Latif AA, Yau S-J, Smith JP: Effect of neurotransmitters on phospholipid, metabolism in rat cerebral-cortex slices-cellular and subcellular distribution. J Neurochem 22: 383–393, 1974

    Google Scholar 

  147. Fillion G, Rousselle JC, Beaudoin D, Pradelles P, Goiny M, Dray F, Jacob J: Serotonin sensitive adenylate cyclase in horse brain synaptosomal membranes. Life Sci 24: 1813–1822, 1979

    Google Scholar 

  148. Conn PJ, Sanders-Bush E, Hoffman BJ, Hartig PR: A unique serotonin receptor in choroid plexus is linked to phosphatidylinositol turnover. Proc Natl Acad Sci USA 83: 4086–4088, 1986

    Google Scholar 

  149. Coughlin SR, Moskowitz MA, Levine L: Identification of a serotonin type 2 receptor linked to prostacyclin synthesis in vascular smooth muscle cells. Biochem Pharmacol 33: 692–695, 1984

    Google Scholar 

  150. Oettling G, Schmidt H, Drews U: The muscarinic receptor of chick embryo cells: correlation between ligand binding and calcium mobilization. J Cell Biol 100: 1073–1081, 1985

    Google Scholar 

  151. Suetake K, Kojima H, Inanaga K, Koketsu K: Catecholamine is released from non-synaptic cell-soma membrane: histochemical evidence in bullfrog sympathetic ganglion cells. Brain Res 205: 436–440, 1981

    Google Scholar 

  152. Faber DS, Funch PG, Korn H: Evidence that receptors mediating central synaptic potentials extend beyond the postsynaptic density. Proc Natl Acad Sci USA 82: 3504–3508, 1985

    Google Scholar 

  153. Roth BL, Beinfeld MC, Howlett AC: Secretin receptors on neuroblastoma cell membranes: characterization of 125I-labeled secretin binding and association with adenylate cyclase. J Neurochem 42: 1145–1152, 1984

    Google Scholar 

  154. Gurwitz D, Razon N, Sokolovsky M, Soreq H: Expression of muscarinic binding sites in primary human brain tumors. Brain Res 316: 61–70, 1984

    Google Scholar 

  155. Syapin PJ, Salvaterra PM, Engelhardt JK: Neuronal-like features of TE671 cells: presence of a functional nicotinic cholinergic receptor. Brain Res 231: 365–377, 1982

    Google Scholar 

  156. Westphal M, Li CH: Human retinoblastomas having binding sites for the COOH-terminal segment of human beta-endorphin. Int J Pept Protein Res 26: 557–559, 1985

    Google Scholar 

  157. Kyritsis A, Koh SW, Chader GJ: Modulators of cyclic AMP in monolayer cultures of Y-79 retinoblastoma cells: partial characterization of the response with VIP and glucagon. Curr Eye Res 3: 339–343, 1984.

    Google Scholar 

  158. MadtesJr P, Kyritsis A, Chader GJ: Neurotransmitter systems in morphologically undifferentiated human Y-79 retinoblastoma cells: studies of GABAergic, glycinergic, and beta-adrenergic systems. J Neurochem 45: 1836–1841, 1985

    Google Scholar 

  159. Shitara N, Reisine TD, Nakamura H, Fujiwara M, Smith BH, Kornblith PL, McKeever PE: The β-adrenergic receptor system in human glioma-derived cell lines: the mode of phosphodiesterase induction and the macromolecules phosphorylated by cyclic AMP-dependent protein kinase. Brain Res 296: 67–74, 1984

    Google Scholar 

  160. Zagon IS, McLaughlin PJ: Stereospecific modulation of tumorigenicity by opioid antagonists. European J Pharmacol 113: 115–120, 1985

    Google Scholar 

  161. Bridges CDB, PetersJr T, Smith JE, Goodman DS, Fong S-L, Griswold MD, Musto NA: Biosynthesis and secretion of transport proteins: interstitial and serum retinol-binding proteins, transthyretin, transferrin, serum albumin, and extracellular sex steroid-binding proteins. Fed Proc 45: 2291–2300, 1986

    Google Scholar 

  162. Yorek MA, Spector AA, Ginsberg BH: Characterization of an insulin receptor in human Y79 retinoblastoma cells. J Neurochem 45: 1590–1595, 1985

    Google Scholar 

  163. Nambi P, Peters JR, Sibley DR, Lefkowitz RJ: Desensitization of the turkey erythrocyte β-adrenergic receptor in a cell-free system. Evidence that multiple protein kinases can phosphorylate and desensitize the receptor. J Biol Chem 260: 2165–2171, 1985

    Google Scholar 

  164. Stadel JM, Rebar R, Shorr RGL, Nambi P, Crooke ST: Biochemical characterization of phosphorylated β-adrenergic receptors from catecholamine-desensitized turkey erythrocytes. Biochem 25: 3719–3724, 1986

    Google Scholar 

  165. Huganir RL, Delcour AH, Greengard P, Hess GP: Phosphorylation of the nicotinic acetylcholine receptor regulates its rate of desensitization. Nature 321: 774–776, 1986

    Google Scholar 

  166. Lin CR, Chen WS, Lazar CS, Carpenter CD, Gill GN, Evans RM, Rosenfeld MG: Protein kinase C phosphorylation at Thr 654 of the unoccupied EGF receptor and EGF binding regulate functional receptor loss by independent mechanisms. Cell 44: 839–848, 1986

    Google Scholar 

  167. Benovic JL, Strasser RH, Caron MG, Lefkowitz RJ: β-Adrenergic receptor kinase: identification of a novel protein kinase that phosphorylates the agonist-occupied form of the receptor. Proc Natl Acad Sci USA 83: 2797–2801, 1986

    Google Scholar 

  168. Mahan LC, Motulsky HJ, Insel PA: Do agonists promote rapid internalization of β-adrenergic receptors? Proc Natl Acad Sci USA 82: 6566–6570, 1985

    Google Scholar 

  169. Perkins JP, Toews ML, Harden TK: Regulation of β-adrenergic receptors during exposure of astrocytoma cells to catecholamines. In: Greengard P, Robison GA, Paoletti R, Nicosia S (ed) Advances in cyclic nucleotide and protein phosphorylation research, Volume 17. Raven Press, New York, 1984, pp 37–46

    Google Scholar 

  170. Harden TK, Petch LA, Traynelis SF, Waldo GL: Agonist-induced alteration in the membrane form of muscarinic cholinergic receptors. J Biol Chem 260: 13060–13066, 1985.

    Google Scholar 

  171. Dixon RA, Kobilka BK, Strader DJ, Benovic JL, Dohlman HG, Frielle T, Bolanowski MA, Bennett CD, Rands E, Diehl RE, et al.: Cloning of the gene and cDNA for mammalian beta-adrenergic receptor and homology with rhodopsin. Nature 321: 75–79, 1986

    Google Scholar 

  172. McLawhon RW, Cermak D, Ellory JC, Dawson G: Glycosylation-dependent regulation of opiate (enkephalin) receptors in neurotumor cells. J Neurochem 41: 1286–1296, 1983

    Google Scholar 

  173. Krstenansky JL, Trivedi D, Hruby VJ: Importance of the 10–13 region of glucagon for its receptor interactions and activation of adenylate cyclase. Biochem 25: 3833–3839, 1986

    Google Scholar 

  174. Colucci WS, Alexander RW: Norepinephrine-induced alteration in the coupling of 363–1 receptor occupancy to calcium efflux in rabbit aortic smooth muscle cells. Proc Natl Acad Sci USA 83: 1743–1746, 1986

    Google Scholar 

  175. Papaphilis A, Deliconstantinos G: Modulation of serotonergic receptors by exogenous cholesterol in the dog synaptosomal plasma membrane. Biochem Pharmacol 29: 3325–3327, 1980

    Google Scholar 

  176. Carlson J, Smith A, Richelson E: Lack of function of histamine H1 and muscarinic acetylcholine receptors of mouse neuroblastoma cells grown in serum-free medium. In Vitro 18: 175–178, 1982

    Google Scholar 

  177. Heron DS, Shinitzky M, Hershkowitz M, Samuel D: Lipid fluidity markedly modulates the binding of serotonin to mouse brain membranes. Proc Natl Acad Sci USA 77: 7463–7467, 1980

    Google Scholar 

  178. Yorek MA, Hyman BT, Spector AA: Clycine uptake by cultured human Y79 retinoblastoma cells: effect of changes in phospholipid fatty acid unsaturation. J Neurochem 40: 70–78, 1983

    Google Scholar 

  179. Yorek MA, Strom DK, Spector AA: Effect of membrane polyunsaturation on carrier-mediated transport in cultured retinoblastoma cells: alterations in taurine uptake. J Neurochem 42: 254–261, 1984

    Google Scholar 

  180. Salesse R, Garnier J: Adenylate cyclase and membrane fluidity. The repressor hypothesis. Mol Cell Biochem 60: 17–31, 1984

    Google Scholar 

  181. Severne Y, Coppens D, Bottari S, Riviere M, Kram R, Vauquelin G: Influence of the β-adrenergic receptor concentration on functional coupling to the adenylate cyclase system. Proc Natl Acad Sci USA 81: 4637–4641, 1984

    Google Scholar 

  182. Wise BC, Guidotti A, Costa E: Regulation of the GABA receptor complex by a phosphorylation mechanism. In: Greengard P, Robison GA, Paoletti R, Nicosia S (ed) Advances in cyclic nucleotide and protein phosphorylation research, Volume 17. Raven Press, 1984, pp 511–519

  183. Baudry M, Evans J, Lynch C: Excitatory amino acids inhibit stimulation of phosphatidylinositol metabolism by aminergic agonists in hippocampus. Nature 319: 329–331, 1986

    Google Scholar 

  184. Sugden D, Vanecek J, Klein DC, Thomas TP, Anderson WB: Activation of protein kinase C potentiates isoprenaline-induced cyclic AMP accumulation in rat pinealocytes. Nature 314: 359–361, 1985

    Google Scholar 

  185. Forn J: Integrated actions of cyclic nucleotides, calcium, and protein phosphorylation in the nervous system. In: Greengard P, Robison GA, Paoletti R, Nicosia S (ed) Advances in cyclic nucleotide and protein phosphorylation research, Volume 17. Raven Press, 1984, pp 473–482

  186. Coughlin SR, Moskowitz MA, Antoniades HN, Levine L: Serotonin receptor-mediated stimulation of bovine smooth muscle cell prostacyclin synthesis and its modulation by platelet-derived growth factor. Proc Natl Acad Sci USA 78: 7134–7138, 1981

    Google Scholar 

  187. Olashaw NE, O'Keefe EJ, Pledger WJ: Platelet-derived growth factor modulates epidermal growth factor receptors by a mechanism distinct from that of phorbol esters. Proc Natl Acad Sci USA 83: 3834–3838, 1986

    Google Scholar 

  188. Chabbott H, Cabot MC: Phorbol diesters inhibit enzymatic hydrolysis of diacylglycerols in vitro. Proc Natl Acad Sci USA 83: 3126–3130, 1986

    Google Scholar 

  189. Gusovsky F, Hollingsworth EB, Daly JW: Regulation of phosphatidylinositol turnover in brain synaptoneurosomes: stimulatory effects of agents that enhance influx of sodium ions. Proc Natl Acad Sci USA 83: 3003–3007, 1986

    Google Scholar 

  190. Miller SG, Kennedy MB: Regulation of brain type II Ca2+/Calmodulin-dependent protein kinase by autophosphorylation: a Ca2+-triggered molecular switch. Cell 44: 861–870, 1986

    Google Scholar 

  191. Rasmussen H: The calcium messenger system. New Engl J Med 314: 1094–1101, 1986

    Google Scholar 

  192. Rasmussen H: The calcium messenger system. New Engl J Med 314: 1164–1170, 1986

    Google Scholar 

  193. Malenka RC, Madison DV, Nicoll RA: Potentiation of synaptic transmission in the hippocampus by phorbol esters. Nature 321: 175–177, 1986

    Google Scholar 

  194. Schnipper LE: Clinical implications of tumor-cell heterogeneity. N Engl J Med 314: 1423–1431, 1986

    Google Scholar 

  195. Schwab M, Alitalo K, Klempnauer KH, Varmus HE, Bishop JM, Gilbert F, Brodeur G, Goldstein M, Trent J: Amplified DNA with limited homology to myc cellular oncogene is shared by human neuroblastoma cell lines and a neuroblastoma tumour. Nature 305: 245–248, 1983

    Google Scholar 

  196. Brodeur GM, Seeger RC, Schwab M, Varmus HE, Bishop JM: Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science 224: 1121–1124, 1984

    Google Scholar 

  197. Emanuel BS, Balaban G, Boyd JP, Grossman A, Negishi M, Parmiter A, Glick MC: N-myc amplification in multiple homogeneously staining regions in two human neuroblastomas. Proc Natl Acad Sci USA 82: 3736–3740, 1985

    Google Scholar 

  198. Shiloh Y, Shipley J, Brodeur GM, Bruns G, Korf B, Donlon T, Schreck RR, Seeger R, Sakai K, Latt SA: Differential amplification, assembly, and relocation of multiple DNA sequences in human neuroblastomas and neuroblastoma cell lines. Proc Natl Acad Sci USA 82: 3761–3765, 1985

    Google Scholar 

  199. Sager R, Gadi IK, Stephens L, Grabowy CT: Gene amplication: an example of accelerated evolution in tumorigenic cells. Proc Natl Acad Sci USA 82: 7015–7019, 1985

    Google Scholar 

  200. Bigner DD, Pegram C: A review of virus-induced experimental brain tumors and of the putative associations of viruses with human brain tumors. Adv Neurol 13: 57–83 1976

    Google Scholar 

  201. Rubinstein LJ: Correlation of animal brain tumor models with human neuro-oncology. Modern Concepts in Brain Tumor Therapy: Laboratory and Clinical Investigations. Natl Cancer Inst Monogr 46: 43–49, 1977

    Google Scholar 

  202. JurgelskiJr W, Hudson PM, Dunn RL, Flak HL: A new animal model for the direct induction of neoplasms during embryonic and fetal development. In: Nieburgs HE (ed) Proceedings of the Third International Symposium on the detection and prevention of cancer, Volume 1, Part 1. Marcel Dekker Inc, New York, 1977, pp 1033–1059

    Google Scholar 

  203. Mukai N, Kobayashi S: Human adenovirus-induced medulloepitheliomatous neoplasms in Sprague-Dawley rats. Am J Pathol 73: 671–690, 1973

    Google Scholar 

  204. Kobayashi S, Mukai N: Retinoblastoma-like tumors induced by human adenovirus type 12 in rats. Cancer Res 34: 1646–1651, 1974

    Google Scholar 

  205. Zu Rhein GM: Studies of JC virus-induced nervous system tumors in the Syrian hamster: a review. Prog Clin Biol Res 105: 205–221, 1983

    Google Scholar 

  206. Padgett BL, Walker DL, ZuRhein GM, Varakis JN: Differential neurooncogenicity of strains of JC virus, a human polyoma virus, in newborn Syrian hamsters. Cancers Res 37: 718–720, 1977

    Google Scholar 

  207. Stevens LC: The development of transplantable teratocarcinomas from intratesticular grafts of pre- and postimplantation mouse embryos. Develop Biol 21: 364–382, 1970

    Google Scholar 

  208. VandenBerg SR, Herman MM, Ludwin SK, Bignami A: An experimental mouse testicular teratoma as a model for neuroepithelial neoplasia and differentiation. I. Light microscopic and tissue and organ culture observations. Am J Pathol 79: 147–168, 1975

    Google Scholar 

  209. Herman MM, VandenBerg SR: Neoplastic neuroepithelial differentiation in an experimental transplantable teratoma. In: Saunders GF (ed) Cell differentiation and neoplasia. Raven Press, New York, 1978, pp 93–109

    Google Scholar 

  210. Vanden Berg SR, Hess JR, Herman MM, DeArmond SJ, Halks-Miller M, Rubinstein LJ: Neural differentiation in the OTT-6050 mouse teratoma: production of a tumor fraction showing melanogenesis in neuroepithelial cells after centrifugal elutriation. Virchows Arch Abt A [Pathol Anat] 392: 295–308, 1981

    Google Scholar 

  211. Orenberg EK, VandenBerg SR, Barchas JD, Herman MM: Neurochemical studies in a mouse teratoma with neuroepithelial differentiation. Presence of cyclic AMP, serotonin and enzymes of the serotonergic, adrenergic and cholinergic systems. Brain Res 101: 273–281, 1976

    Google Scholar 

  212. VandenBerg SR, Hickey JE, Herman MM: Brain-associated cell surface antigens on neuroepithelial cells in a transplantable mouse teratoma. Acta Neuropath 39: 281–287, 1977

    Google Scholar 

  213. Ramsay PB, VandenBerg SR, Eng LF, Herman MM, Rubinstein LJ: Immunologic recognition of cell surface antigens in normal mouse neural tissues and neuroepithelial cells of the OTT-6050 mouse teratoma. A radiometric, gel electrophoretic and morphologic (immunofluorescence and immunoperoxidase) study. Acta Neuropathol 56: 214–224, 1982

    Google Scholar 

  214. VandenBerg SR, Ludwin SK, Herman MM, Bignami A: In vitro astrocytic differentiation from embryoid bodies of an experimental mouse testicular teratoma. Am J Pathol 83: 197–212, 1976

    Google Scholar 

  215. VandenBerg SR, Ludwin SK, Herman MM, Bignami A: In vitro astrocytic differentiation from embryoid bodies of an experimental mouse testicular teratoma (Abstract). J Neuropathol Exp Neurol 35: 354, 1976

    Google Scholar 

  216. PierceJr GB, DixonJr FJ, Verney EL: Teratocarcinogenic and tissue-forming potentials of the cell types comprising neoplastic embryoid bodies. Lab Invest 9: 583–602, 1960

    Google Scholar 

  217. Mintz B, Illmensee K: Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc Natl Acad Sci USA 72: 3585–3589, 1975

    Google Scholar 

  218. Damjanov I, Solter D, Serman D: Teratocarcinoma with the capacity for differentiation restricted to neuro-ectodermal tissue. Virchows Arch Abt B Zellpath 13: 179–195, 1973

    Google Scholar 

  219. VandenBerg SR, Chatel M, Griffiths OM, DeArmond SJ, Pappas C, Herman MM: Neural differentiation in the OTT-6050 mouse teratoma: production of a tumor fraction restricted to stem cells and neural cells after centrifugal elutriation. Virchows Arch Abt A [Pathol Anat] 392: 281–294, 1981

    Google Scholar 

  220. Thiele CJ, Reynolds CP, Israel MA: Decreased expression of N-myc precedes retinoic acid-induced morphological differentiation of human neuroblastoma. Nature 313: 404–406, 1985

    Google Scholar 

  221. Muller R: Differential expression of cellular oncogenes during murine development and in teratocarcinoma cell lines. In: Silver LM, Martin GR, Strickland S (ed) Teratoma stem cells. Cold Spring Harbor Conference on Cell Proliferation, Volume 10, 1983, pp 451–468

  222. Dony C, Kessel M, Gruss P: Post-transcriptional control of myc and p53 expression during differentiation of the embryonal carcinoma cell line F9. Nature 317: 636–639, 1985

    Google Scholar 

  223. Jakobovits A, Schwab M, Bishop JM, Martin GR: Expression of N-myc in teratocarcinoma stem cells and mouse embryos. Nature 318: 188–191, 1985

    Google Scholar 

  224. Griep AE, DeLuca HF: Decreased c-myc expression is an early event in retinoic acid-induced differentiation of F9 teratocarcinoma cells. Proc Natl Acad Sci USA 83: 5539–5543, 1986

    Google Scholar 

  225. Snoek GT, Mummery CL, van den Brink CE, van der Saag PT, de Laat SW: Protein kinase C and phorbol ester receptor expression related to growth and differentiation of nullipotent and pluripotent embryonal carcinoma cells. Develop Biol 115: 282–292, 1986

    Google Scholar 

  226. VandenBerg SR: Neoplastic neuroepithelial differentiation in a transplantable mouse teratoma — development of a system for the study of embryonal tumors of the central nervous system. Ph.D. Dissertation, Stanford University, 1979

  227. Jakupcevic M, Lackovic Z, Damjanov I, Bulat M: Biogenic amines in a retransplantable neurogenic teratocarcinoma. Experentia 30: 652–653, 1974

    Google Scholar 

  228. Moots PL, VandenBerg SR: Demonstration of high affinity [3H]5-HT binding in primitive neural cells of the OTT-6050 mouse teratoma. (Abstract) J Neuropathol Exp Neurol 45: 326, 1986

    Google Scholar 

  229. Zeltzer PM, Schneider SL, von Hoff DD: Morphologic, cytochemical and neurochemical characterization of the human medulloblastoma cell line TE671. J Neurooncol 2: 35–45, 1984

    Google Scholar 

  230. Friedman HS, Burger PC, Bigner SH, Trojanowski JQ, Wikstrand CJ, Halperin EC, Bigner DD: Establishment and characterization of the human medulloblastoma cell line and transplantable xenograft D283 Med. J Neuropathol Exp Neurol 44: 592–605, 1985

    Google Scholar 

  231. Jacobsen PF, Jenkyn DJ, Papadimitriou JM: Establishment of a human medulloblastoma cell line and its heterotransplantation into nude mice. J Neuropathol Exper Neurol 44: 472–485, 1985

    Google Scholar 

  232. Reid TW, Albert DM, Rabson AS, Russel P, Craft J, Chu EW, Tralka TS, Wilcox JL: Characteristics of an established cell line of retinoblastoma. J Natl Cancer Inst 53: 347–360, 1974

    Google Scholar 

  233. McFall RC, Sery TW, Makadon M: Characterization of a new continuous cell line derived from a human retinoblastoma. Cancer Res 37: 1003–1010, 1977

    Google Scholar 

  234. McFall RC, Nagy RM, Nagle BT, McGreevy LM: Scanning electron microscopic observation of two retinoblastoma cell lines. Cancer Res 38: 2827–2835, 1978

    Google Scholar 

  235. Friedman HS, Bigner SH, McComb RD, ScholdJr SC, Pasternak JF, Groothuis DR, Bigner DD: A model for human medulloblastoma. Growth, morphology, and chromosomal analysis in vitro and in athymic mice. J Neuropathol Exp Neurol 42: 485–503, 1983

    Google Scholar 

  236. ScholdJr SC, Friedman HS, Bjornsson TD, Bigner DD: Treatment of human glioma and medulloblastoma tumor lines in athymic mice with diaziquone and diaziquone-based drug combinations. Cancer Res 44: 2352–2357, 1984

    Google Scholar 

  237. Dranoff G, Elion GB, Friedman HS, Bigner DD: Combination chemotherapy in vitro exploiting glutamine metabolism of human glioma anmd medulloblastoma. Cancer Res 45: 4082–4086, 1985

    Google Scholar 

  238. Friedman HS, ScholdJr SC: Rational approaches to the chemotherapy of medulloblastoma. Neurol Clin 3: 843–853, 1985

    Google Scholar 

  239. Friedman HS, ScholdJr SC, Bigner DD: Chemotherapy of subcutaneous and intracranial human medulloblastoma xenografts in athymic nude mice. Cancer Res 46: 224–228, 1986

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vandenberg, S.R., Herman, M.M. & Rubinstein, L.J. Embryonal central neuroepithelial tumors: Current concepts and future challenges. Cancer Metast Rev 5, 343–365 (1987). https://doi.org/10.1007/BF00055377

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00055377

Keywords

Navigation