Skip to main content
Log in

Mutational analysis of the conserved domains of a T-region border repeat of Agrobacterium tumefaciens

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Left-and right-border repeats, which surround the T-region, contain two conserved regions separated by 5 bp that are not conserved. At the onset of T-DNA processing virD-encoded proteins introduce a nick in the largest of these conserved regions (12 bp) at a specific position in the bottom strand between a guanine and thymine nucleotide [2, 33]. In this paper we describe the effect of several site-directed mutations in the right-border repeat on tumorigenicity of Agrobacterium in plants. Our data show that mutations introduced directly around the nick site do not seriously affect the tumorigenicity of Agrobacterium, whereas mutations in the right part of this 12 bp conserved region do so. Furthermore, it appeared that the second conserved region (5 bp) is also essential for border activity and that the distance between the two conserved regions is important to obtain optimal border activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akiyoshi DE, Klee H, Amasino RM, Nester EW, Gordon MD: T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc Natl Acad Sci USA 81: 5994–5998 (1984).

    PubMed  Google Scholar 

  2. Albright LM, Yanofsky MF, Leroux B, Ma D, Nester EW: Processing of the T-DNA of Agrobacterium tumefaciens generates border nicks and linear, single-stranded T-DNA J Bact 169: 1046–1055 (1987).

    PubMed  Google Scholar 

  3. Barker RF, Idler KB, Thompson DV, Kemp JD: Nucleotide sequence of the T-DNA region from Agrobacterium tumefaciens octopine Ti plasmid pTi15955. Plant Mol Biol 2: 335–350 (1983).

    Google Scholar 

  4. Bevan MW, Chilton M-D: T-DNA of the Agrobacterium Ti and Ri plasmids. Ann Rev Genet 16: 357–384 (1982).

    Article  PubMed  Google Scholar 

  5. Bomhoff G, Klapwijk PM, Kester HCM, Schilperoort RA, Hernalsteens JP, Schell J: Octopine and nopaline synthesis and breakdown genetically controlled by a plasmid of Agrobacterium tumefaciens. Mol Gen Genet 145: 177–181 (1976).

    Article  PubMed  Google Scholar 

  6. Buchanan-Wollaston V, Passiatore JE, Cannon F: The mod and oriT mobilization functions of a bacterial plasmid promote its transfer to plants. Nature 328: 172–174 (1987).

    Article  Google Scholar 

  7. Chen E, Seeburg P: Supercoil sequencing: A fast and simple method for sequencing plasmid DNA. DNA 4: 165–170 (1985).

    PubMed  Google Scholar 

  8. Citovsky V, Wong ML & Zambryski P: Cooperative interaction of Agrobacterium VirE2 protein with single-stranded DNA: implications for the T-DNA transfer process. Proc Natl Acad Sci USA 86: 1193–1197 (1989).

    PubMed  Google Scholar 

  9. Ditta G, Stanfield S, Corbin D, Helinski DR: Broad host range DNA cloning system for Gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci USA 77: 7347–7351 (1980).

    PubMed  Google Scholar 

  10. Douglas CJ, Staneloni RJ, Rubin RA, Nester EW: Identification and genetic analysis of an Agrobacterium tumefaciens chromosomal virulence region. J Bact 161: 850–860 (1985).

    PubMed  Google Scholar 

  11. Drew HR, Weeks JR, Travers AA: Negative supercoiling induces spontaneous unwinding of a bacterial promoter. EMBO J 4: 1025–1032 (1985).

    PubMed  Google Scholar 

  12. Giphart-Gassler M, Van dePutte P: Thermo-inducible expression of cloned early genes of bacteriophage Mu. Gene 7: 33–50 (1979).

    Article  PubMed  Google Scholar 

  13. Guyon P, Chilton MD, Petit A, Tempe J: Agropine in ‘null-type’ crown gall tumors: evidence for generality of the opine concept. Proc Natl Acad Sci USA 77: 2693–2697 (1980).

    Google Scholar 

  14. Hooykaas PJJ, DenDulk-Ras H, Ooms G, Schilperoort RA: Interactions between octopine and nopaline plasmids in Agrobacterium tumefaciens. J Bact 143: 1295–1306 (1980).

    PubMed  Google Scholar 

  15. Hooykaas PJJ, Hofker M, DenDulk-Ras H, Schilperoort RA: A comparison of virulence determinants in an octopine Ti-plasmid, a nopaline Ti plasmid and a Ri-plasmid by complementation analysis of Agrobacterium tumefaciens mutants. Plasmid 11: 195–205 (1984).

    PubMed  Google Scholar 

  16. Jouanin L, Bouchez D, Drong RF, Tepfer D, Slightom JL: Analysis of TR-DNA/plant junctions in the genome of a Convolvulus arvensis clone transformed by Agrobacterium tumefaciens strain A4. Plant Mol Biol 12: 75–85 (1989).

    Article  Google Scholar 

  17. Klee H, White FF, Iyer VN, Gordon MP, Nester EW: Mutational analysis of the virulence region of an Agrobacterium tumefaciens Ti plasmid. J Bact 153: 878–883 (1983).

    PubMed  Google Scholar 

  18. Koekman BP, Hooykaas PJJ, Schilperoort RA: A functional map of the replicator region of the octopine Ti plasmid. Plasmid 7: 119–132 (1982).

    PubMed  Google Scholar 

  19. Maniatis T, Fritsch EF, Sambrook J: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratories, Cold Spring Harbor, NY (1982).

    Google Scholar 

  20. Marsh JL, Erfle M, Wykes EJ: The pIC plasmid and phage vectors with versatile cloning sites for recombinant selection by insertional inactivation. Gene 32: 481–485 (1984).

    Article  PubMed  Google Scholar 

  21. Nagaraja V, Shepherd JCW, Bickle TA: A hybrid recognition sequence in a recombinant restriction enzyme and the evolution of DNA sequence specificity. Nature 316: 371–372 (1985).

    PubMed  Google Scholar 

  22. Ooms G, Hooykaas PJJ, VanVeen RJM, VanBeelen P, Regensburg-Tuink AJG, Schilperoort RA: Octopine Ti plasmid deletion mutants of Agrobacterium with emphasis on the right side of the T-region. Plasmid 7: 15–29 (1982).

    PubMed  Google Scholar 

  23. Peralta EG, Hellmiss R, Ream W: Overdrive, a T-DNA transmission enhancer on the A. tumefaciens tumour-inducing plasmid. EMBO J 5: 1137–1142 (1986).

    Google Scholar 

  24. Shaw CH, Watson MD, Carter GH, Shaw CH: The right hand copy of the nopaline Ti plasmid 25 bp repeat is required for tumour formation. Nucleic Acids Res 12: 6031–6041 (1984).

    PubMed  Google Scholar 

  25. Stachel SE, Nester EW: The genetic and transcriptional organization of the vir-region of the A6 Ti plasmid of Agrobacterium tumefaciens. EMBO J 5: 1445–1454 (1986).

    PubMed  Google Scholar 

  26. Stachel SE, Timmerman B, Zambryski P: Activation of Agrobacterium tumefaciens vir gene expression generates multiple single-stranded T-strand molecules from the pTiA6 T-region: requirement for 5′ virD gene produce, EMBO J 6: 857–863 (1987).

    PubMed  Google Scholar 

  27. Thomashow LS, Reeve S, Thomashow MF: Crown gall oncogenesis: evidence that a T-DNA gene from the Agrobacterium Ti plasmid pTiA6 encodes an enzyme that catalyzes synthesis of indoleacetic acid. Proc Natl Acad Sci USA 81: 5071–5075 (1984).

    PubMed  Google Scholar 

  28. Thompson R, Taylor L, Kelly K, Everett R, Willetts N: The F plasmid origin of transfer: DNA sequence of wild-type and mutant origins and location of origin-specific nicks. EMBO J 5: 1175–1180 (1984).

    Google Scholar 

  29. VanHaaren MJJ, Pronk JT, Schilperoort RA, Hooykaas PJJ: Functional analysis of the Agrobacterium tumefaciens octopine Ti plasmid left and right T-region border fragments. Plant Mol Biol 8: 95–104 (1987).

    Google Scholar 

  30. VanHaaren MJJ, Sedee NJA, Schilperoort RA, Hooykaas PJJ: Overdrive is a T-region transfer enhancer which stimulates T-strand production in Agrobacterium tumefaciens. Nucleic Acids Res 15: 8983–8997 (1987).

    PubMed  Google Scholar 

  31. VanHaaren MJJ, Sedee NJA, Krul M, Schilperoort RA, Hooykaas PJJ: Function of heterologous and pseudo border repeats in T-region transfer via the octopine virulence system of Agrobacterium tumefaciens. Plant Mol Biol 11: 773–781 (1988).

    Google Scholar 

  32. Wang K, Genetello C, VanMontagu M, Zambryski PC: Sequence context of the T-DNA border repeat element determines its relative activity during T-DNA transfer to plant cells. Mol Gen Genet 210: 338–346 (1987).

    Google Scholar 

  33. Wang K, Stachel SE, Timmerman B, VanMontagu M, Zambryski PC: Site-specific nick in the T-DNA border sequence as a result of Agrobacterium vir gene expression. Science 235: 587–591 (1987).

    Google Scholar 

  34. Ward ER, Barnes WM: VirD2 protein of Agrobacterium tumefaciens very tightly linked to the 5′ end of T-strand DNA. Science 242: 927–930 (1988).

    Google Scholar 

  35. Yadav NS, Vanderleyden J, Bennet DR, Barnes WM, Chilton MD: Short direct repeats flank the T-DNA on a nopaline Ti plasmid. Proc Natl Acad Sci USA 79: 6322–6326 (1982).

    Google Scholar 

  36. Yanisch-Perron C, Vieira J, Messing J: Improved M13 phage cloning vectors and host strains: nucleotide sequence of the M13mp18 and pUC19 vectors. Gene 33: 103–119 (1985).

    Article  PubMed  Google Scholar 

  37. Yanofsky MF, Porter SG, Young C, Albright LM, Gordon MP, Nester EW: The virD operon of Agrobacterium tumefaciens encodes a site specific endonuclease. Cell 47: 471–477 (1986).

    Article  PubMed  Google Scholar 

  38. Zoller MJ, Smith M: Oligonucleotide-directed mutagenesis using M13-derived vectors: an efficient and general procedure for the production of point mutations in any fragment of DNA. Nucleic Acids Res 10: 6487–6500 (1982).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Haaren, M.J.J., Sedee, N.J.A., de Boer, H.A. et al. Mutational analysis of the conserved domains of a T-region border repeat of Agrobacterium tumefaciens . Plant Mol Biol 13, 523–531 (1989). https://doi.org/10.1007/BF00027312

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00027312

Key words

Navigation