Skip to main content
Log in

Rhizobial lipo-oligosaccharides: answers and questions

  • Update Section
  • Mini Review
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Rhizobium bacteria produce certain lipo-oligosaccharides (modified chitin oligomers) after induction of nodulation (nod) gene transcription by the host plant. The function of the rhizobial nod genes in the biosynthesis of these lipo-oligosaccharides, focusing on their host specific aspects, is discussed. The lipo-oligosaccharides can elicit various responses in the host plants, like the formation of pre-infection threads and nodule meristems. Speculating on their function in plant morphogenesis the question is raised: do the rhizobial lipo-oligosaccharides resemble unknown plant signal molecules?

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baev N, Endre G, Petrovics G, Banfalvi Z, Kondorosi A: Six nodulation genes of nod box locus 4 in Rhizobium meliloti are involved in nodulation signal production: nodM codes for D-glucosamine synthetase. Mol Gen Genet 228: 113–124 (1991).

    Google Scholar 

  2. Baev N, Kondorosi A: Nucleotide sequence of the R. meliloti nodL gene located in locus n5 of the nod regulon. Plant Mol Biol 18: 843–846 (1992).

    Google Scholar 

  3. Benhamou N, Asselin A: Attempted localization of a substrate for chitinases in plant cells reveals abundant N-acetyl-D-glucosamine residues in secondary walls. Biol Cell 67: 341–350 (1989).

    Google Scholar 

  4. Bibb MJ, Biro S, Motamedi H, Collins JF, Hutchinson CR: Analysis of the nucleotide sequence of the Streptomyces glaucescens tcm1 genes provide key information about the enzymology of polyketide antibiotic biosynthesis. EMBO J 9: 2727–2736 (1989).

    Google Scholar 

  5. Bowen AR, Chen-Wu JL, Momany M, Young R, Szaniszlo PJ, Robbins PW: Classification of fungal chitin synthases. Proc Natl Acad Sci USA 89: 519–523 (1992).

    Google Scholar 

  6. Brewin NJ: Development of the legume root nodule. Annu Rev Cell Biol 7: 191–226 (1991).

    Google Scholar 

  7. Bulawa CE: CSD2, CSD3 and CSD4, genes required for chitin synthesis in Saccharomyces cerevisiae: the CSD2 gene product is related to chitin synthases and to developmentally regulated proteins in Rhizobium species and Xenopus laevis. Mol Cell Biol 12: 1764–1776 (1992).

    Google Scholar 

  8. Cronan JEJr, Rock CO: Biosynthesis of membrane lipids. In: Neidhardt FC (ed) Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 1, pp. 474–497. American Society for Microbiology, Washington DC (1987).

    Google Scholar 

  9. Darvill AG, Albersheim P, Bucheli P, Doares S, Doubrava N, Eberhard S, Gollin DJ, Hahn MG, Marfa-Riera V, York WS, Mohnen D: Oligosaccharins: plant regulatory molecules. In: Lugtenberg BJJ (ed) Signal Molecules in Plants and Plant-Microbe Interactions, NATO ASI Series, pp. 41–48. Springer-Verlag, Berlin (1989).

    Google Scholar 

  10. deJong AJ, Cordewener J, Lo Schiavo F, Terzi M, Vandekerckhove J, vanKammen A, DeVries S: A carrot somatic embryo mutant is rescued by chitinase. Plant Cell 4: 425–433 (1992).

    Google Scholar 

  11. deMaagd RA, Wijfjes AHM, Spaink HP, Ruiz-Sainz JE, Wijffelman CA, Okker RJH, Lugtenberg BJJ: nodO, a new nod gene of the Rhizobium leguminosarum biovar. viciae Sym plasmid pRL1JI, encodes a secreted protein. J Bact 171: 6764–6770 (1989).

    Google Scholar 

  12. Dénarié J, Roche P: Rhizobium nodulation signals. In: Verma DPS (ed) Molecular Signals in Plant-Microbe Communications, pp. 295–324. CRC Press, Boca Raton, FL (1992).

    Google Scholar 

  13. Djordjevic MA, Weinman JJ: Factors determining host recognition in the clover-Rhizobium symbiosis. Aust J Plant Physiol 18: 543–557 (1991).

    Google Scholar 

  14. Downie JA, Surin BP: Either of two nod loci can complement the nodulation defect of a nod deletion mutant of Rhizobium leguminosarum bv. viciae. Mol Gen Genet 222: 81–86 (1990).

    Google Scholar 

  15. Downie JA: A nod of recognition. Curr Opin Biol 1: 382–384 (1991).

    Google Scholar 

  16. Ehrhardt DW, Atkinson EM, Long SR: Depolarization of alfalfa root hair membrane potential by Rhizobium meliloti Nod factors. Science 256: 998–1000 (1992).

    Google Scholar 

  17. Geiger O, Spaink HP, Kennedy EP: Isolation of Rhizobium leguminosarum NodF nodulation protein: NodF carries a 4′-phosphopantetheine prosthetic group. J Bact 173: 2872–2878 (1991).

    Google Scholar 

  18. Hopwood DA, Sherman DH: Molecular genetics of polyketides and its comparison to fatty acid biosynthesis. Annu Rev Genet 24: 37–66 (1990).

    Google Scholar 

  19. Horvath B, Bachem CW, Schell J, Kondorosi A: Hostspecific regulation of nodulation genes in Rhizobium is mediated by a plant-signal, interacting with the nodD gene product. EMBO J 6: 841–848 (1987).

    Google Scholar 

  20. Horvath B, Franssen H, Heidstra R, Kardailsky I, Lados M, Meshi T, Moerman M, Mylona P, Novak K, Vijn I, Yang W-C, Bisseling T: Mechanisms involved in early nodulin gene expression. In Hallick RB (ed) Molecular Biology of Plant Growth and Development, Program and Abstracts. Tucson, Department of Biochemistry, University of Arizona, Tucson, abstract 127 (1991).

    Google Scholar 

  21. John M, Schmidt J, Wieneke U, Krüssmann HD, Schell J: Transmembrane orientation and receptor-like structure of the Rhizobium meliloti modulation protein NodC. EMBO J 7: 583–588 (1988).

    Google Scholar 

  22. Kondorosi A: Regulation of nodulation genes in rhizobia. In: Verma DPS (ed) Molecular Signals In Plant-Microbe Communications, pp. 325–340. CRC Press, Boca Raton, FL (1992).

    Google Scholar 

  23. Lerouge P, Roche P, Faucher C, Maillet F, Truchet G, Promé JC, Dénarié J: Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 344: 781–784 (1990).

    Google Scholar 

  24. Long SR: Rhizobium genetics. Annu Rev Genet 23: 483–506 (1989).

    Google Scholar 

  25. Marie C, Barny M-A, Downie JA: Rhizobium leguminosarum has two glucosamine synthases, GlmS and NodM, required for nodulation and development of nitrogen fixing nodules. Mol Microbiol 6: 843–851 (1992).

    Google Scholar 

  26. Nap J-P, Bisseling T: Developmental biology of a plantprokaryote symbiosis: the legume root nodule. Science 250: 948–954 (1990).

    Google Scholar 

  27. Ogawa Y, Brierley HL, Long SR: Analysis of Rhizobium meliloti nodulation mutant WL131: novel insertion sequence ISRm3 in nodG and altered nodH protein product. J Bact 173: 3060–3065 (1991).

    Google Scholar 

  28. Recourt K, Schripsema J, Kijne JW, vanBrussel AAN, Lugtenberg BJJ: Inoculation of Vicia sativa subsp. nigra roots with R. leguminosarum biovar. viciae results in release of nod gene activating flavanones and chalcones. Plant Mol Biol 16: 841–852 (1991).

    Google Scholar 

  29. Recourt K: Flavonoids in the early Rhizobium-legume interaction. Ph.D. thesis, Leiden University, (1991).

  30. Roche P, Debellé F, Maillet F, Lerouge P, Faucher C, Truchet G, Dénarié J, Promé JC: Molecular basis of symbiotic host specificity in Rhizobium meliloti: nodH and nodPQ genes encode the sulphation of lipo-oligosaccharide signals. Cell 67: 1131–1143 (1991).

    Google Scholar 

  31. Sandal NN, Marcker KA: Some nodulin and Nod proteins show similarity to specific animal proteins. In: Gresshoff PM, Roth LE, Stacey G, Newton WE (eds) Nitrogen Fixation: Achievements and Objectives, pp. 687–692. Chapman and Hall, New York (1990).

    Google Scholar 

  32. Saxena IM, Lin FC, Brown RM: Cloning and sequencing of the cellulose synthase catalytic subunit gene of Acetobacter xylinum. Plant Mol Biol 15: 673–683 (1990).

    Google Scholar 

  33. Scheres B, van deWiel C, Zalensky A, Horvath B, Spaink HP, vanEck H, Zwartkruis F, Wolters A-M, Gloudemans T, vanKammen A, Bisseling T: The ENOD12 gene product is involved in the infection process during the pea-Rhizobium interaction. Cell 60: 281–294 (1990).

    Google Scholar 

  34. Schlaman HRM, Okker RJH, Lugtenberg BJJ: Regulation of nodulation gene expression by NodD in rhizobia. J Bact 174: 5177–5182 (1992).

    Google Scholar 

  35. Schmidt J, John M, Wieneke U, Stacey G, Röhrig H, Schell J: Studies on the function of Rhizobium meliloti nodulation genes. In: Hennecke H, Verma DPS (eds) Advances in Molecular Genetics of Plant-Microbe Interactions, pp. 150–155. Kluwer Academic Publishers, Dordrecht (1991).

    Google Scholar 

  36. Schultze M, Quiclet-Sire B, Kondorosi E, Virelizier H, Glushka JN, Endre G, Géro SD, Kondorosi A: Rhizobium meliloti produces a family of sulfated lipo-oligosaccharides exhibiting different degrees of plant host specificity. Proc Natl Acad Sci USA 89: 192–196 (1992).

    Google Scholar 

  37. Schwedock J, Long SR: ATP sulphurylase activity of the nodP and nodQ gene products of Rhizobium meliloti. Nature 348: 644–647 (1990).

    Google Scholar 

  38. Sheldon PS, Kekwick RGO, Sidebottom C, Smith CG, Slabas AR: 3-oxoacyl-(acyl-carrier protein) reductase from avocado (Persea americana) fruit mesocarp. Biochem J 271: 713–720 (1990).

    Google Scholar 

  39. Spaink HP, Wijffelman CA, Pees E, Okker RJH, Lugtenberg BJJ: Rhizobium nodulation gene nodD as a determinant of host specificity. Nature 328: 337–340 (1987).

    Google Scholar 

  40. Spaink HP, Weinman J, Djordjevic MA, Wijffelman CA, Okker RJH, Lugtenberg BJJ: Genetic analysis and cellular localization of the Rhizobium host specificity-determining NodE protein. EMBO J 8: 2811–2818 (1989).

    Google Scholar 

  41. Spaink HP, Sheeley DM, vanBrussel AAN, Glushka J, York WS, Tak T, Geiger O, Kennedy EP, Reinhold VN, Lugtenberg BJJ: A novel highly unsaturated fatty acid moiety of lipo-oligosaccharide signals determines host specificity of Rhizobium. Nature 354: 125–130 (1991).

    Google Scholar 

  42. Spaink HP, Aarts A, Stacey G, Bloemberg GV, Lugtenberg BJJ, Kennedy EP: Detection and separation of Rhizobium and Bradyrhizobium Nod metabolites using thin layer chromatography. Mol Plant-Microbe Interact 5: 72–80 (1992).

    Google Scholar 

  43. Spaink HP, Aarts A, Bloemberg GV, Folch J, Geiger O, Schlaman HRM, Thomas-Oates JE, Van De Sande K, Van Spronsen P, Van Brussel AAN, Wijfjes AHM, Lugtenberg BJJ: Rhizobial lipo-oligosaccharides: their biosynthesis and their role in the plant. In: Nester E (ed) Advances in Molecular Genetics of Plant-Microbe Interactions, vol. 2. Kluwer Academic Publishers, Dordrecht (in press).

  44. Truchet G, Barker DG, Camut S, deBilly F, Vasse J, Huguet T: Alfalfa nodulation in the absence of Rhizobium. Mol Gen Genet 219: 65–68 (1989).

    Google Scholar 

  45. Truchet G, Roche P, Lerouge P, Vasse J, Camut S, DeBilly F, Promé J-C, Dénarié J: Sulphated lipo-oligosaccharide signals of Rhizobium meliloti elicit root nodule organogenesis in alfalfa. Nature 351: 670–673 (1991).

    Google Scholar 

  46. Tsay J-T, Oh W, Larson TJ, Jackowski S, Rock CO: Isolation and characterization of the β-ketoacyl-acyl carrier protein synthase III gene (fabH) from Escherichia coli K-12. J Biol Chem 267: 6807–6814 (1992).

    Google Scholar 

  47. vanBrussel AAN, Zaat SAJ, Canter Cremers HCJ, Wijffelman CA, Pees E, Tak T, Lugtenberg BJJ: Role of plant root exudate and sym plasmid-localized nodulation genes in the synthesis by Rhizobium leguminosarum of Tsr factor which causes thick and short roots on common vetch. J Bact 165: 517–522 (1986).

    Google Scholar 

  48. vanBrussel AAN: Symbiotic signals in early stages of the morphogenesis of Rhizobium-induced root nodules. Symbiosis 9: 135–146 (1990).

    Google Scholar 

  49. vanBrussel AAN, Bakhuizen R, vanSpronsen P, Spanik HP, Tak T, Lugtenberg BJJ, Kijne J: Induction of preinfection thread structures in the host plant by lipo-oligosaccharides of Rhizobium. Science 257: 70–72 (1992).

    Google Scholar 

  50. Verma DPS: Signals in root nodule organogenesis and endocytosis of Rhizobium. Plant Cell 4: 373–382 (1992).

    Google Scholar 

  51. Young JPW, Johnston AWB: The evolution of specificity in the legume-Rhizobium symbiosis. Tree 4: 341–349 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spaink, H.P. Rhizobial lipo-oligosaccharides: answers and questions. Plant Mol Biol 20, 977–986 (1992). https://doi.org/10.1007/BF00027167

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00027167

Key words

Navigation