Skip to main content
Log in

DNaseI-sensitive and undermethylated rDNA is preferentially expressed in a maize hybrid

  • Research Articles
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

An Eco RI polymorphism, present in the 26S ribosomal RNA gene (rDNA) of the maize hybrid Sx19 (B73×Mo17), was utilized to correlate DNaseI sensitivity, undermethylation and expression in rDNA. We had previously shown that in double digest experiments with methylation-sensitive restriction enzymes and Eco RI, Sx19 rDNA fragments originating from repeat units with two Eco RI sites (8.0 kb) are undermethylated, whereas the fragments originating from repeat units with a single Eco RI site (9.1 kb) are completely methylated. In the present study, Sx19 rDNA chromatin structure was examined by purifying intact nuclei and digesting them briefly with increasing amounts of DNaseI. Analysis of this DNA with Eco RI showed that the 8.0 kb rDNA fragments are extremely sensitive to DNaseI digestion, while the 9.1 kb rDNA fragments are relatively resistant to digestion even at high levels of DNasel. Specific sites hypersensitive to DNaseI cleavage were mapped to a region in the intergenic spacer (IGS) near the major undermethylated site. Analysis of polymerase chain reaction (PCR) products synthesized using Sx19, B73, and Mo17 DNAs as templates indicated that the Eco RI polymorphism is due to a base change in the recognition site. Direct rRNA sequencing identified a single-base change in Mo17 rRNA relative to B73 rRNA. Allele-specific oligonucleotide probes containing the region surrounding and including the Eco RI polymorphic site were utilized to detect a nucleolar dominance effect by quantitating levels of rRNA transcripts in Sx19 and the reciprocal cross. Results from these single-base-pair mismatch hybridization experiments indicate that the majority of the rRNA transcripts in Sx19 orginate from the DNaseI-sensitive, undermethylated, Eco RI-polymorphic rDNA repeat units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Appels R, Honeycutt RL: rDNA: Evolution over a billion years. In: Dutta SK (ed) DNA Systematics II: Plants, pp. 81–135. CRC Press, Boca Raton, FL (1986).

    Google Scholar 

  2. Banks JA, Fedoroff N: Patterns of developmental and heritable change in methylation of the Suppressor-mutator transposable element. Devel Genet 10: 425–437 (1989).

    Google Scholar 

  3. Banks JA, Masson P, Fedoroff N: Molecular mechanisms in the developmental regulation of the maize Suppressor-mutator transposable element. Genes Devel 2: 1364–1380 (1988).

    PubMed  Google Scholar 

  4. Berent SL, Mahmoudi M, Torezynski RM, Bragg PW, Bollon AP: Comparison of oligonucleotide and long DNA fragments as probes in DNA and RNA dot, Southern, Northern, colony and plaque hybridizations. Bio Techniques 3: 208–220 (1985).

    Google Scholar 

  5. Bird AP, Taggart MH, Gehring CA: Methylated and unmethylated ribosomal RNA genes in the mouse. J Mol Biol 152: 1–17 (1981).

    Article  PubMed  Google Scholar 

  6. Bird A, Taggart M, Macleod D: Loss of rDNA methylation accompanies the onset of ribosomal gene activity in early development of X. laevis. Cell 26: 381–390 (1981).

    Article  PubMed  Google Scholar 

  7. Cartwight IL, Elgin SCR: Nucleosomal instability and induction of new upstream protein-DNA associations accompany activation of four small heat shock protein genes in Drosophila melanogaster. Mol Cell Biol 6: 779–791 (1986).

    PubMed  Google Scholar 

  8. Conconi A, Widmer RM, Koller T, Sogo JM: Two different chromatin structures coexist in ribosomal RNA genes throughout the cell cycle. Cell 57: 753–761 (1989).

    Article  PubMed  Google Scholar 

  9. Conner BJ, Reyes AA, Morin C, Itakura K, Teplitz RL, Wallace RB: Detection of sickle cell β-globin allele by hybridization with synthetic oligonucleotides. Proc Natl Acad Sci USA 80: 278–282 (1983).

    PubMed  Google Scholar 

  10. Culotta V, Sollner-Webb B: Site of topoisomeraseI action on X. laevis ribosomal chromatin: Transcriptionally active rDNA has an ∼200 bp repeating structure. Cell 52: 585–597 (1988).

    Article  PubMed  Google Scholar 

  11. DeBorde DC, Naeve CW, Herlocher ML, Maassab HF: Resolution of a common RNA sequencing ambiguity by terminal deoxynucleotidyl transferase. Anal Biochem 157: 275–282 (1986).

    PubMed  Google Scholar 

  12. Fedoroff N, Masson P, Banks JA: Mutations, epimutations, and the developmental programming of the maize Suppressor-mutator transposable element. BioEssays 10: 140–144 (1989).

    Google Scholar 

  13. Flavell RB, O'Dell M: The genetic control of nucleolus formation in wheat. Chromosoma 71: 135–152 (1979).

    Article  Google Scholar 

  14. Flavell RB, O'Dell M, Thompson WF: Cytosine methylation of ribosomal RNA genes and nucleolus organizer activity in wheat. In: Brandham PE, Bennett MD (eds) Kew Chromosome Conference II, pp. 11–17. George Allen and Unwin, London (1983).

    Google Scholar 

  15. Flavell RB, O'Dell MO, Thompson WF: Regulation of cytosine methylation in ribosomal DNA and nucleolus organizer expression in wheat. J Mol Biol 204: 523–534 (1988).

    Article  PubMed  Google Scholar 

  16. Flavell RB, O'Dell MO, Thompson WF: Vincentz M, Sardana R, Barker RF: The differential expression of ribosomal RNA genes. Phil Trans R Soc Lond B 314: 385–397 (1986).

    Google Scholar 

  17. Givens JF and Phillips RL: The nucleolus organizer region of maize (Zea mays L.). Chromosoma 57: 103–117 (1976).

    Article  Google Scholar 

  18. Gross DS, Garrard WT: Nuclease hypersensitive sites in chromatin. Annu Rev Biochem 57: 159–197 (1988).

    Article  PubMed  Google Scholar 

  19. Hall TC, Ma Y, Buchbinder BU, Pyne JW, Sun SM, Bliss FA: Messenger RNA for G1 protein of french bean seeds: Cell-free translation and product characterization. Proc Natl Acad Sci USA 75: 3196–3200 (1978).

    Google Scholar 

  20. Hamby RK, Sims L, Issel L, Zimmer E: Direct ribosomal RNA sequencing: Optimization of extraction and sequencing methods for work with higher plants. Plant Mol Biol Rep 6: 175–192 (1988).

    Google Scholar 

  21. Honjo T, Reeder RH: Preferential transcription of Xenopus laevis ribosomal RNA in interspecies hybrids between Xenopus laevis and Xenopus mulleri. J Mol Biol 80: 217–228 (1973).

    PubMed  Google Scholar 

  22. Jupe ER, Zimmer EA: Unmethylated regions in the intergenic spacer of maize and teosinte ribosomal RNA genes. Plant Mol Biol 14: 333–347 (1990).

    PubMed  Google Scholar 

  23. Kaufman LS, Watson JC, Thompson WF: Light-regulated changes in DNaseI hypersensitive sites in the rRNA genes of Pisum sativum. Proc Natl Acad Sci USA 84: 1550–1554 (1987).

    Google Scholar 

  24. Laskey RA, Mills AD: Enhanced autoradiographic detection of 32P and 125I using intensifying screens and hypersensitized film. FEBS Lett 82: 314–316 (1977).

    Article  PubMed  Google Scholar 

  25. LaVolpe A, Taggart M, McStay B, Bird A: DNaseI-hypersensitive sites at promoter-like sequences in the spacer of Xenopus laevis and Xenopus borealis ribosomal DNA. Nucl Acids Res 11: 5361–5380 (1983).

    PubMed  Google Scholar 

  26. Macleod D, Bird A: DNaseI sensitivity and methylation of active versus inactive rRNA genes in Xenopus species hybrids. Cell 29: 211–218 (1982).

    Article  PubMed  Google Scholar 

  27. Martini G, Flavell RB: The control of nucleolus volume in wheat: A genetic study at three developmental stages. Heredity (London) 54: 111–120 (1985).

    Google Scholar 

  28. Maxam AM, Gilbert W: A new method for sequencing DNA. Proc Natl Acad Sci USA 74: 560–564 (1977).

    PubMed  Google Scholar 

  29. McClelland M, Nelson M: The effect of site specific methylation on restriction endonuclease digestion. Nucl Acids Res Suppl 13: r201-r207 (1985).

    Google Scholar 

  30. McClintock B: The relationship of a particular chromosomal element to the development of the nucleoli in Zea mays. Z Zellforsch Mikrosk Anat 21: 294–328 (1934).

    Google Scholar 

  31. McMullen MD, Hunter B, Phillips RL, Rubenstein I: The structure of the maize ribosomal DNA spacer region. Nucl Acids Res 14: 4953–4968 (1986).

    PubMed  Google Scholar 

  32. Moss TA: Transcriptional function for the repetitive ribosomal spacer in Xenopus laevis. Nature 302: 223–228 (1983).

    PubMed  Google Scholar 

  33. Murray MG, Kennard WC: Altered chromatin conformation of the higher plant gene phaseolin. Biochemistry 23: 4225–4232 (1984).

    Google Scholar 

  34. Phillips RL: Molecular cytogenetics of the nucleolus organizer region. In: Walden DB (ed) Maize Breeding and Genetics, pp. 711–741. John Wiley, New York (1978).

    Google Scholar 

  35. Phillips RL, Wang AS, Kowles RV: Molecular and developmental cytogenetics of gene multiplicity in maize. Stadler Symp 15: 105–118 (1983).

    Google Scholar 

  36. Phillips RL, McMullen MD, Enomoto S, Rubenstein I: Ribosomal DNA in maize. Stadler symp 18: 201–214 (1988).

    Google Scholar 

  37. Reeder RH, Roan JG: The mechanism of nucleolar dominance in Xenopus hybrids. Cell 38: 39–44 (1984).

    Article  Google Scholar 

  38. Reeder RH: Mechanisms of nucleolar dominance in animals and plants. J Cell Biol 101: 2013–2016 (1985).

    Article  PubMed  Google Scholar 

  39. Rivin CJ, Zimmer EA, Cullis CA, Walbot V, Huynh T, Davis RW: Evaluation of genomic variability at the nucleic acid level. Plant Mol Biol Rep 1: 9–16 (1983).

    Google Scholar 

  40. Rivin CJ, Cullis CA, Walbot V: Evaluating quantitative variation in the genome of Zea mays. Genetics 113: 1009–1019 (1986).

    PubMed  Google Scholar 

  41. Rogers SO, Bendich AJ: Ribosomal RNA genes in plants: Variability in copy number and in the intergenetic spacer. Plant Mol Biol 9: 509–520 (1987).

    Google Scholar 

  42. Sachdev V, Jupe E, Zimmer E: Tissue-specific hypomethylation of maize rDNA. Maize Genet Coop Newslet 61: 23 (1987).

    Google Scholar 

  43. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N: Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230: 1350–1354 (1985).

    PubMed  Google Scholar 

  44. Suggs SV, Hirose T, Miyake T, Kawashima EH, Johnson MJ, Itakura K, Wallace RB: Use of synthetic oligodeoxyribonucleotides for the isolation of specific cloned DNA sequences. In: Brown DD (ed) ICN-UCLA Symposium Developmental Biology Using Purified Genes, vol 23, pp. 683–693. Academic Press, New York (1981).

    Google Scholar 

  45. Takaiwa F, Oona K, Iida Y, Sugiura M: The complete sequence of a rice 25S rRNA gene. Gene 37: 255–289 (1985).

    Article  PubMed  Google Scholar 

  46. Thompson WF, Flavell RB: DNaseI sensitivity of ribosomal RNA genes in chromatin and nucleolar dominance in wheat. J Mol Biol 204: 535–548 (1988).

    Article  PubMed  Google Scholar 

  47. Toloczyki C, Feix G: Occurrence of 9 homologous repeat units in the external spacer region of a nuclear maize rRNA gene unit. Nucl Acids Res 14: 4969–4986 (1986).

    PubMed  Google Scholar 

  48. Wu C: The 5′ ends of Drosophila heat shock genes in chromatin are hypersensitive to DNaseI. Nature 286: 854–860 (1980).

    PubMed  Google Scholar 

  49. Wurtzel ET, Burr FA, Burr B: DNaseI hypersensitivity and expression of the Shrunken-1 gene of maize. Plant Mol Biol 8: 251–264 (1987).

    Google Scholar 

  50. Zimmer EA, Jupe ER, Walbot V: Ribosomal gene structure, variation and inheritance in maize and its ancestors. Genetics 120: 1125–1136 (1988).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jupe, E.R., Zimmer, E.A. DNaseI-sensitive and undermethylated rDNA is preferentially expressed in a maize hybrid. Plant Mol Biol 21, 805–821 (1993). https://doi.org/10.1007/BF00027113

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00027113

Key words

Navigation