Skip to main content
Log in

BEM and FEM analysis of planar moving cracks in creeping solids

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Applications of the boundary element method (BEM) and the finite element method (FEM), to the analysis of two-dimensional problems of moving cracks in creeping bodies, is the subject of this paper. In the absence of an acceptable crack growth law valid under small scale transient as well as extended steady state creep conditions, the computer simulations are carried out here for crack extension at prescribed constant speeds. It is shown here that the BEM is most effective for the analysis of transient crack growth under small scale creep conditions while the FEM appears to be best suited for the study of crack growth under conditions of extensive creep throughout most of the structure. These two methods, therefore, tend to complement each other for this class of problems. It is felt that the numerical methods presented here can, in conjunction with experiments, be very useful for the evaluation of existing crack growth laws as well as for the development of new ones.

Résumé

Le sujet du mémoire est l'application de la méthode par valeurs aux limites (BEM) et de la méthode par éléments finis (FEM) à l'analyse de problèmes bidimensionnels de fissures en extension dans des composants soumis à fluage.

En l'absence d'une loi d'extension de fissure qui soit applicable tant sous des conditions de fluage transitoire à petite échelle que de fluage stable généralisé, on procède aux simulations per calcul on considérant le développement d'une fissure à des vitesses constantes fixées.

On montre que la méthode BEM est plus efficace pour analyser la croissance d'une fissure de fluage en régime transitoire à une petite échelle, tandis que la méthode FEM convient le mieux pour étudier la croissance d'une fissure dans des conditions de fluage s'étendant à l'ensemble du composant.

Dès lors, les deux méthodes tendent à se compléter pour cette classe de problèmes. On estime que les méthodes numériques qui sont présentées ici, peuvent être très utiles, en association avec des essais, pour évaluer les lois existantes en matière de propagation de fissures, ainsi que pour en développer de nouvelles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Koterazawa and Y. Iwata, Journal of Engineering Materials and Technology, Transactions ASME (1976) 296-304.

  2. M.P. Harper and E.G. Ellison, Strain Analysis (1977) 167–179.

  3. P. Shahinian and K. Sadananda, in ASME-MPC Symposium on Creep Fatigue Interaction, ASME (1976) 365–390.

  4. D.J. Smith and G.A. Webster, Strain Analysis 16 (1981) 37–143.

    Google Scholar 

  5. A. Saxena, T.T. Shih and H.A. Ernst, “Wide Range Creep Crack Growth Rate Behavior of A470 Class 8 (Cr-Mo-V) Steel,” Westinghouse Scientific Paper 82-1D7-EVFLA-P1 (February 1982).

  6. K. Sadananda and P. Shahinian, Transactions ASME, Journal of Engineering Materials and Technology 100 (1978) 381–387.

    Google Scholar 

  7. H. Riedel, Zeitschrift für Metallkunde 69 (1978) 755–760.

    Google Scholar 

  8. H. Riedel and J.R. Rice, Tensile Cracks in Creeping Solids, ASTM STP 700, American Society for Testing Materials (1980) 112–130.

  9. C.Y. Hui and H. Riedel, International Journal of Fracture (1981) 409–425.

  10. J. Hutchinson, “Constitutive Behavior and Crack Tip Fields for Materials Undergoing Creep-Constrained Grain Boundary Cavitation,” Report No. MECH 34, Division of Applied Sciences, Harvard University, Cambridge, MA (1982).

    Google Scholar 

  11. S. Mukherjee, Boundary Element Method in Creep and Fracture, Applied Science Publishers Ltd., Barking, Essex, England (1982).

    Google Scholar 

  12. S. Mukherjee and V. Banthia, in Developments in Boundary Element Methods, Vol. 3 P.K. Banerjee and S. Mukherjee (eds.), Applied Science Publishers, London (1984) 87–114.

    Google Scholar 

  13. J.L. Bassani and F.A. McClintock, International Journal of Solids and Structures 17 (1981) 479–492.

    Google Scholar 

  14. N.I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity (Trans. J.R.M. Radok), Noordhoff, Groningen (1953).

    Google Scholar 

  15. S.K. Chan, I.S. Tuba and W.K. Wilson, Engineering Fracture Mechanics 2 (1980) 1–17.

    Article  Google Scholar 

  16. P. Tong and T.H.H. Pian, International Journal of Solids and Structures 9 (1973) 313–321.

    Article  Google Scholar 

  17. P. Tong and T.H.H. Pian, International Journal of Numerical Methods in Engineering (1973) 297-308.

  18. E. Byskov, International Journal of Fracture Mechanics 6 (1970) 159–167.

    Article  Google Scholar 

  19. S.E. Benzley, International Journal of Numerical Methods in Engineering 3 (1974) 537–545.

    Google Scholar 

  20. D.M. Tracy, Engineering Fracture Mechanics 3 (1971) 255–265.

    Article  Google Scholar 

  21. R.D. Henshell and K.G. Shaw, International Journal of Numerical Methods in Engineering 9 (1975) 495–509.

    Google Scholar 

  22. R.S. Barsoum, International Journal of Fracture 10 (1974) RCR 603–605.

    Google Scholar 

  23. H.D. Hibbit, International Journal of Numerical Methods in Engineering 11 (1977) 180–184.

    Google Scholar 

  24. R.S. Barsoum, International Journal of Numerical Methods in Engineering 10 (1976) 25–37.

    Google Scholar 

  25. A.R. Ingraffea, private communications.

  26. N. Levy, P.V. Marcal, W.J. Ostergren and J.R. Rice, International Journal of Fracture Mechanics 7 (1971) 143–156.

    Article  Google Scholar 

  27. R.S. Barsoum, International Journal of Numerical Methods in Engineering 11 (1977) 85–98.

    Google Scholar 

  28. V. Banthia, International Journal for Numerical Methods in Engineering (In press).

  29. G.H. Staab, Computers and Structures 17 (1983) 449–457.

    Article  Google Scholar 

  30. T.J.R. Hughes and J.E. Akin, International Journal of Numerical methods in Engineering 15 (1980) 733–752.

    Google Scholar 

  31. D.M. Tracey and T.S. Cook International Journal of Numerical methods in Engineering 11 (1977) 1225–1234.

    Google Scholar 

  32. O.C. Zienkiewicz and I.C. Cormeau International Journal of Numerical Methods in Engineering 8 (1974) 821–845.

    Google Scholar 

  33. O.C. Zienkiewicz, The Finite Element Method, McGraw-Hill, New York (1979).

    Google Scholar 

  34. R.H. Gallaghar, Finite Element Analysis, Prentice-Hall Inc., Englewood Cliffs, NJ (1975)

    Google Scholar 

  35. V.K. Banthia, “Numerical Analysis of Time-dependent Inelastic Fracture,” Ph.D. thesis, Department of Theoretical and Applied mechanics, Cornell University, Ithaca, NY (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banthia, V., Mukherjee, S. BEM and FEM analysis of planar moving cracks in creeping solids. Int J Fract 28, 83–101 (1985). https://doi.org/10.1007/BF00018586

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00018586

Keywords

Navigation