Skip to main content
Log in

On the dynamic fracture of structural metals

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Some fundamental aspects of dynamic crack growth in structural steels are presented and discussed. The discussion takes the form of a direct comparison of experimental results to elastic-plastic analyses, and attempts to clarify the role of material inertia and plasticity in the dynamic crack growth process. In addition the relation of crack growth criteria to micromechanical void growth models is considered.

Potential problems in the analysis of data obtained by either direct optical measurements or numerical simulations of crack growth are presented. It is demonstrated that large errors in the velocity records caused by stress wave effects are a main source of uncertainty in the interpretation of experimental results.

Résumé

On présente et on discute certains aspects fondamentaux de la croissance dynamique d'une fissure dans des aciers de construction. La discussion prend la forme d'une comparaison directe des résultats expérimentaux à l'analyse élasto-plastique et tente de clarifier le rôle de l'inertie et de la plasticité du matériau dans le processus de croissance dynamique d'une fissure. On considère en outre la relation qui les critères de la croissance d'une fissure aux modèles micro-mécaniques de croissance des lacunes.

On présente les problèmes potentiels que peuvent surgir dans l'analyse des données obtenues par des mesures directes optiques ou par des simulations numériques de la croissance d'une fissure. On démontre que des erreurs importantes dans les enregistrements de vitesse causées par des effets d'onde de contrainte sont la source principale d'incertitudes dans l'interprétation des résultats expérimentaux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.B. Freund, in Mechanics of Fracture, ASME-AMD 19 (1976) 105–134.

  2. P.S. Lam and L.B. Freund, Journal of the Mechanics and Physics of Solids (1984) to appear.

  3. L.B. Freund and A.S. Douglas, Journal of the Mechanics and Physics of Solids 30 (1982) 59–74.

    Google Scholar 

  4. L.I. Slepyan, Mekhanika Tverdogo Tela (English translation) 11 (1976) 144–153.

    Google Scholar 

  5. J.D. Achenbach and V. Dunayevsky, Journal of the Mechanics and Physics of Solids 29 (1981) 283–303.

    Google Scholar 

  6. Y.C. Gao and S. Nemat-Nasser, Mechanics of Materials 2 (1983) 47–60.

    Google Scholar 

  7. A.S. Douglas, Ph.D. Thesis, Brown University (1981).

  8. F.A. McClintock and G.R. Irwin, in Fracture Toughness Testing and its Applications, ASTM-STP 381 (1964) 95.

  9. R. Dean and J.W. Hutchinson, in Fracture Mechanics: Twelfth Conference, ASTM-STP 700 (1980) 383–405.

  10. P.S. Lam and R.M. McMeeking, Journal of the Mechanics and Physics of Solids (1984) 395–414.

  11. A.J. Rosakis, Ph.D. Thesis, Brown University (1982).

  12. A.J. Rosakis, J. Duffy and L.B. Freund, in Workshop on Dynamic Fracture Proceedings. Edited by W.G. Knauss, K. Ravi-Chandar and A.J. rosakis, California Institute of Technology (1983) 100–118.

  13. A.J. Rosakis, J. Duffy and L.B. Freund, Journal of the Mechanics and Physics of Solids 32 (1984) 443–460.

    Google Scholar 

  14. B. Brickstad, International Journal of Fracture 21 (1983) 177–194.

    Google Scholar 

  15. C.D. Beachem, Transactions of the American Society of Metals 56 (1963) 318.

    Google Scholar 

  16. A.R. Rosenfield, Metallurgical Reviews 13, review 121 (1968) 29–40 and Metals and Materials 2 (1968).

    Google Scholar 

  17. F.A. McClintock, Journal of Applied Mechanics 35 (1968) 363–371.

    Google Scholar 

  18. J.R. Rice and D.M. Tracey, Journal of the Mechanics and Physics of Solids 17 (1969) 201.

    Google Scholar 

  19. J.R. Rice, in Mechanics of Fracture, ASME-AMD 19 (1976) 23–53.

  20. E.B. Glennie, Journal of the Mechanics and Physics of Solids 20 (1972) 415–429.

    Google Scholar 

  21. K. Ravi-Chandar and W.G. Knauss, International Journal of Fracture 25 (1984) 247–262; 26 (1984) 65–80, 141–154, 193–204.

    Google Scholar 

  22. T. Kanazawa, S. Machida, T. Teramoto and H. Yoshinari, Experimental Mechanics (1981) 78–88.

  23. Z. Bilek, in Crack Arrest Methodology and Applications, ASTM-STP 711 (1980) 240–247.

  24. A.J. Carlsson, Transactions of the Royal Institute of Technology, Stockholm, 189 (1962).

  25. B. Brickstad and F. Nilsson, International Journal of Fracture 16 (1980) 71–84.

    Google Scholar 

  26. Z. Bilek, Scripta Metallurgica 12 (1978) 1101–1106.

    Google Scholar 

  27. G.T. Hahn et al., Report to the U.S. Nuclear Regulatory Commission, Battelle Columbus Laboratories (1974–1976).

  28. G.C. Angelino, in Fast Fracture and Crack Arrest, ASTM-STP 627 (1978) 392–407.

  29. W.G. Knauss, Proceedings of the 6th International Conference on Fracture, New Delhi, Dec. 4–10, 1984.

  30. W.G. Knauss and K. Ravi-Chandar, International Journal of Fracture 27 (1985).

  31. J.W. Dally, Optical Methods in Mechanics of Solids. Edited by A. Lagarde, Sijthoff and Noordhoff (1980) 692.

  32. A.S. Kobayashi, Experimental Mechanics 10 (1970) 106.

    Google Scholar 

  33. A.S. Kobayashi, in Fracture Mechanics. Edited by N. Perrone et al. University Press, Charlottesville, Virginia (1978) 481–496.

    Google Scholar 

  34. J. Beinert and J.F. Kalthoff, in Mechanics of Fracture, Vol. VII. Edited by G. Sih, Sijthoff and Noordhoff (1981) 281–330.

  35. W.G. Knauss, R. Pfaff and C. Schultheisz. Private Communication. Caltech (1984).

  36. K.S. Kim, Journal of Applied Mechanics (1985) to appear.

  37. T. Kobayashi and J.W. Dally, Crack Arrest Methodology and Applications, ASTM-STP 711 (1980) 189–210.

  38. P. Manogg, Ph.D. Thesis, University of Freiburg (1964).

  39. P.S. Theocaris and E.E. Gdoutos, Journal of Applied Mechanics 39 (1972) 91.

    Google Scholar 

  40. A.J. Rosakis, Engineering Fracture Mechanics 13 (1980) 331–347.

    Google Scholar 

  41. A.J. Rosakis and L.B. Freund, Journal of Applied Mechanics 48 (1981) 302–308.

    Google Scholar 

  42. A.J. Rosakis and A.T. Zehnder, Journal of Elasticity (1985) to appear.

  43. A.J. Rosakis and A.T. Zehnder, work in progress. Caltech (1984).

  44. A.J. Rosakis and K. Ravi-Chandar, GALCIT Report SM 84–2 (March 1984).

  45. W. Yang and L.B. Freund, Brown University Report (1984).

  46. N. Levy, P.V. Marcal and J.R. Rice, Nuclear Engineering and Design 17 (1971) 64–75.

    Google Scholar 

  47. A.J. Rosakis and L.B. Freund, Journal of Engineering Materials and Technology 104 (1982) 115–120.

    Google Scholar 

  48. R.J. Weimer and H.C. Rogers, Fast Fracture and Crack Arrest, ASTM-STP 627 (1977) 359–371.

    Google Scholar 

  49. J. Congleton and B.K. Denton, in Fast Fracture and Crack Arrest, ASTM-STP 627 (1977) 336–358.

  50. A.S. Kobayashi et al., Journal of Engineering Materials Technology 100 (1978) 402–410.

    Google Scholar 

  51. L. Hodulak, A.S. Kobayashi and A.F. Emery, Fracture Mechanics: Twelfth Conference, ASTM-STP 700 (1980) 174–188.

    Google Scholar 

  52. T. Nishioka and S.N. Atluri, Engineering Fracture Mechanics 16 (1982) 157–175.

    Google Scholar 

  53. J.F. Kalthoff et al., in Crack Arrest Methodology and Applications, ASTM-STP 711 (1980) 109–127.

  54. L. Dahlberg, F. Nilsson and B. Brickstad, in Crack Arrest Methodology and Applications, ASTM-STP 711 (1980) 89–108.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosakis, A.J., Zehnder, A.T. On the dynamic fracture of structural metals. Int J Fract 27, 169–186 (1985). https://doi.org/10.1007/BF00017966

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00017966

Keywords

Navigation