Skip to main content

Structural similarity and adaptation

  • Conference paper
  • First Online:
Advances in Case-Based Reasoning (EWCBR 1996)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1168))

Included in the following conference series:

Abstract

Most commonly, case-based reasoning is applied in domains where attribute value representations of cases are sufficient to represent the features relevant to support classification, diagnosis or design tasks. Distance functions like the Hamming-distance or their transformation into similarity functions are applied to retrieve past cases to be used to generate the solution of an actual problem. Often, domain knowledge is available to adapt past solutions to new problems or to evaluate solutions. However, there are domains like architectural design or law in which structural case representations and corresponding structural similarity functions are needed. Often, the acquisition of adaptation knowledge seems to be impossible or rather requires an effort that is not manageable for fielded applications. Despite of this, humans use cases as the main source to generate adapted solutions. How to achieve this computationally? This paper presents a general approach to structural similarity assessment and adaptation. The approach allows to explore structural case representations and limited domain knowledge to support design tasks. It is exemplarily instantiated in three modules of the design assistant FABEL-Idea that generates adapted design solutions on the basis of prior CAD layouts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Allen. Towards a general theory of action and time. Artificial Intelligence, 23:123–154, 1984.

    Google Scholar 

  2. Luitpold Babel and Gottfried Tinhofer. A branch and bound algorithm for the maximum clique problem. ZOR — Methods and Models of Operations-Research, 34:207–217, 1990.

    Google Scholar 

  3. H. G. Barrow and R. M. Burstall. Subgraph isomorphism relational structures and maximal cliques. Information Processing Letters, 4:83–84, 1976.

    Google Scholar 

  4. Brigitte Bartsch-Spörl and Elisabeth-Ch. Tammer. Graph-based approach to structural similarity. In Angi Voß, editor, Similarity concepts and retrieval methods, pages 45–58. GMD, Sankt Augustin, 1994.

    Google Scholar 

  5. S. Bhatta and A. Goel. From design cases to generic mechanisms. AI EDAM, 10, 1996.

    Google Scholar 

  6. Katy Börner. Structural similarity as guidance in case-based design. In Wess et al. [25], pages 197–208.

    Google Scholar 

  7. Katy Börner. Conceptual analogy. In D. W. Aha and A. Ram, editors, AAAI 1995 Fall Symposium Series: Adaptation of Knowledge for Reuse, pages 5–11, November 10–12, Boston, MA, 1995.

    Google Scholar 

  8. Katy Börner. Interactive, adaptive, computer aided design. In Milton Tan and Robert Teh, editors, The Global Design Studio — proceedings of the 6th international conference on computer-aided architectural design futuresB95, pages 627–634, Singapore, 1995. Centre for Advanced Studies in Architecture, National University of Singapore.

    Google Scholar 

  9. Katy Börner and Roland Faßauer. Analogical Layout Design (Syn*). In Katy Börner, editor, Modules for Design Support, pages 59–68. GMD, Sankt Augustin, June 1995.

    Google Scholar 

  10. Katy Börner, Klaus P. Jantke, Siegfried Schönherr, and Elisabeth-Ch. Tammer. Lernszenarien im fallbasierten Schließen. Fabel-Report 14, GMD, Sankt Augustin, December 1993.

    Google Scholar 

  11. C. Bron and J. Kerbosch. Finding all cliques in an undirected graph. Communications of the ACM, 16:575–577, 1973.

    Google Scholar 

  12. Carl-Helmut Coulon. Automatic Indexing, Retrieval and Reuse of Topologies in Architectural Layouts. In Milton Tan and Robert Teh, editors, The Global Design Studio — proceedings of the 6th international conference on computer-aided architectural design futures, pages 577–586, Singapore, 1995. Centre for Advanced Studies in Architecture, National University of Singapore.

    Google Scholar 

  13. Eric A. Domeshek and Janet L. Kolodner. A case-based design aid for architecture. In Proc. Second International Conference on Artificial Intelligence in Design, pages 497–516. Kluwer Academic Publishers, 1992.

    Google Scholar 

  14. Ashok K. Goel. Integration of case-based reasoning and model-based reasoning for adaptive design problem solving. PhD thesis, Ohio State University, Columbus, Ohio, 1989.

    Google Scholar 

  15. Kefeng Hua and Boi Faltings. Exploring case-based building design — CADRE. AI EDAM, 7(2):135–144, 1993.

    Google Scholar 

  16. Klaus P. Jantke. Nonstandard concepts of similarity in case-based reasoning. In H. H. Bock, W. Lenski, and M. M. Richter, editors, Information Systems and Data Analysis: Prospects-Foundations-Applications, pages 29–44. Springer Verlag, 1994.

    Google Scholar 

  17. Janet L. Kolodner. Case-Based Reasoning. Morgan Kaufmann, San Mateo, 1993.

    Google Scholar 

  18. M. Malek and B. Amy. A pre-processing model for integrating CBR and prototype-based neural networks. Technical report, Working Paper TIMC-LIFIA-IMAG Grenoble, 1994.

    Google Scholar 

  19. M. Pearce, A. K. Goel, J. L. Kolodner, C. Zimring, L. Sentosa, and R. Billington. Case-based design support: A case study in architectural design. IEEE Expert, pages 14–20, October 1992.

    Google Scholar 

  20. Jörg Walter Schaaf. “Fish and Sink”; An Anytime-Algorithm to Retrieve Adequate Cases. In Manuela Veloso and Agnar Aamodt, editors, Case-based reasoning research and development: first International Conference, ICCBR-95, proceedings, pages 538–547. Springer, Berlin, October 1995.

    Google Scholar 

  21. Ingo Schiemann and Ansgar Woltering. Organisation großer Fallbasen in der TUBJANUS Shell zum effizienten Retrieval geeigneter Fälle. In Richter M. M., editor, Workshop Fallbasiertes Schlieβen: Grundlagen und Anwendungen, Deutsche Expertensystemtagung XPS-95, LSA-95-02, pages 30–36, 1995.

    Google Scholar 

  22. Barry Smyth and Mark T. Keane. Retrieving adaptable cases: The role of adaptation knowledge in case retrieval. In Wess et al. [25], pages 209–220.

    Google Scholar 

  23. Kathleen Steinhöfel. Backtrack Algorithmus zur Suche des größten gemeinsamen Teilgraphen. HTWK Leipzig, 1995. Dokumentation.

    Google Scholar 

  24. Elisabeth-Ch. Tammer, Kathleen Steinhöfel, Siegfried Schönherr, and Daniel Matuschek. Anwendung des Konzeptes der Strukturellen Ähnlichkeit zum Fallvergleich mittels Term-und Graph-Repräsentationen. Fabel-Report 38, GMD, Sankt Augustin, September 1995.

    Google Scholar 

  25. Stefan Wess, Klaus-Dieter Althoff, and Michael M. Richter, editors. Topics in Case-Based Reasoning — Selected Papers from the First European Workshop on Case-Based Reasoning (EWCBR-93), volume 837 of LNAI. Springer Verlag, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ian Smith Boi Faltings

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Börner, K., Pippig, E., Tammer, EC., Coulon, CH. (1996). Structural similarity and adaptation. In: Smith, I., Faltings, B. (eds) Advances in Case-Based Reasoning. EWCBR 1996. Lecture Notes in Computer Science, vol 1168. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0020602

Download citation

  • DOI: https://doi.org/10.1007/BFb0020602

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61955-0

  • Online ISBN: 978-3-540-49568-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics