Skip to main content
Log in

The oxidation and protection of gamma titanium aluminides

  • Coatings and Environment Effect
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The excellent density-specific properties of the gamma class of titanium aluminides make them attractive for intermediate-temperature (600–850 °C) aerospace applications. The oxidation and embrittlement resistance of these alloys is superior to that of the α2 and orthorhombic classes of titanium aluminides. However, since gamma alloys form an intermixed Al2O3TiO2 scale in air rather than the desired continuous Al2O3 scale, oxidation resistance is inadequate at the high end of this temperature range (i.e., greater than 750–800°C). For applications at such temperatures, an oxidation-resistant coating will be needed; however, a major drawback of the oxidation-resistant coatings currently available is severe degradation in fatigue life by the coating. A new class of oxidation-resistant coatings based in the Ti-Al-Cr system offers the potential for improved fatigue life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.W. Kim and F.H. Froes, High Temperature Aluminides and Intermetallies, ed. S.H. Whang et al. (Warrendale, PA: TMS, 1990), p. 465.

    Google Scholar 

  2. M. Yamaguchi, Titanium ′92, ed. F.H. Froes and I. Caplan (Warrendale, PA: TMS, 1993), p. 959.

    Google Scholar 

  3. S.-C. Huang, U.S. patent 4,879,092 (1989).

  4. U.R. Kattner, J.-C. Lin, and Y.A. Chang, Met. Trans. A, 23A (1992), p. 2081.

    CAS  Google Scholar 

  5. G.H. Meier et al., Oxidation of High-Temperature Intermetallies, ed. T. Grobstein and J. Doychak (Warrendale, PA: TMS, 1988), p. 185.

    Google Scholar 

  6. S. Becker et al., Ox. Met., 38 (5/6) (1992), p. 425.

    CAS  Google Scholar 

  7. K. Maki et al., Mat. Sci. and Eng., A153 (1992), p. 591.

    CAS  Google Scholar 

  8. S.A Kekare, D.K. Shelton, and P.B. Aswath, Mat. Res. Soc. Symp. Proc., vol. 288 (Pittsburgh, PA: MRS, 1993), p. l025.

    Google Scholar 

  9. Y. Shida and H. Anada, Mat. Trans., JIM, 35 (9) (1994), p. 623.

    CAS  Google Scholar 

  10. A. Rahmel, W.J. Quadakkers, and M. Schutze, Materials and Corrosion, 46 (1995), p. 281.

    Google Scholar 

  11. V.V. Samokhval, P.A. Poleshuk, and A.A. Vecher, Russ. J. Phys. Chem., 45 (8) (1971), p. 1174.

    Google Scholar 

  12. M. Hoch and R.J. Usell, Jr., Met. Trans., 2 (1971), p. 2627.

    CAS  Google Scholar 

  13. N.S. Jacobson, M.P. Brady, and G.M. Mehrotra, “Twin Knudsen Cell Measurements of Aluminum Activities in TiAl Alloys,” Electrochemical Society Extended Abstracts, 188th Meeting of the Electrochemical Society (Pennington, NJ: the Electrochemical Society, 1995).

    Google Scholar 

  14. M. Eckert etal., Ber. Bunsenges. Phys. Chem., 100 (4) (1996), p. 418.

    CAS  Google Scholar 

  15. K.I. Luthra, Ox. Met., 36 (5/6) (1991), p. 475.

    CAS  Google Scholar 

  16. A. Rahmel and P.J. Spencer, Ox. Met., 35 (1/2) (1991), p. 53.

    CAS  Google Scholar 

  17. X.I.. Li et al., Acta Metall. Mater., 40 (11) (1992), p. 3149.

    CAS  Google Scholar 

  18. M.-X. Zhang et al., Scripta Met. Mater., 27 (1992), p. 1361.

    CAS  Google Scholar 

  19. G.P. Kelkar and A.H. Carim, J. Am. Ceram. Soc., 78 (3) (1995), p. 572.

    CAS  Google Scholar 

  20. Y. Chen, D.J. Young, and B. Gleeson, Materials Letters, 22 (1995), p. 125.

    CAS  Google Scholar 

  21. W.E. Dowling, Jr. and W.T. Donlon, Scripta Met. et Mater., 27 (1992), p. 1663.

    CAS  Google Scholar 

  22. R W. Beye and R. Gronsky, Acta Met. et Mater., 42 (1994), p. 1373.

    CAS  Google Scholar 

  23. N. Zheng et al., Scripta Met. et Mater., 33 (1995), p. 47.

    CAS  Google Scholar 

  24. Y.F. Cheng et al., Scripta Materialia, 34 (5) (1996), p. 707.

    CAS  Google Scholar 

  25. F. Dettenwanger et al., “Development and Microstructure of the Al-Depleted Layer of Oxidized TiAl,” Materials and Corrosion, in press.

  26. E.H. Copland, B. Gleeson, and D.J. Young, “Factors Affecting the Sub-Surface Formation of a TixAltOz Phase During Oxidation of ψ-TiAl Based Alloys,” Proceedings of the 13th International Corrosion Congress (Melbourne, Australia: Int. Corr. Council, 1996).

    Google Scholar 

  27. N.S. Choudhury, H.C. Graham, and J.W. Hinze, Properties of High Temperature Alloys, ed. Z.A. Fouroulis and F.S. Pettit (Pennington, NJ: the Electrochemical Society, 1976), p. 668.

    Google Scholar 

  28. F. Dettenwanger et al., Mat. Res. Soc. Symp., vol. 364 (1995), p. 981.

    CAS  Google Scholar 

  29. J.M. Rakowski et al., Scripta Met. et Mater., 33 (1995), p. 997.

    CAS  Google Scholar 

  30. N. Zheng et al., Ox. Met., 44 (5/6) (1995), p. 477.

    CAS  Google Scholar 

  31. R.A. Perkins, K.T. Chiang, and G.H. Meier, Scripta Met., 21 (1987), p. 1505.

    CAS  Google Scholar 

  32. T.A. Wallace et al., Environmental Effects on Advanced Materials, ed. R.H. Jones and R.E. Ricker (Warrendale, PA: TMS, 1991), p. 79.

    Google Scholar 

  33. Y-W. Kim, Mat. Res. Soc. Symp. Proc., vol. 213 (Pittsburgh, PA: MRS, 1991), p. 777.

    Google Scholar 

  34. D.W. McKee and S.C. Huang, Corrosion Science, 33 (12) (1992), p. 1899.

    CAS  Google Scholar 

  35. B.G. Kim, G.M. Kim, and C.J. Kim, Scripta Met. et Mater., 33 (7) (1995), p. 1117.

    CAS  Google Scholar 

  36. J. Doychak, Intermetallic Compounds, ed. J.H. Westbrook and R.I. Fleischer (New York: John Wiley & Sons Ltd. 1994), p. 977.

    Google Scholar 

  37. J.C. Schaeffer, C.M. Austin, and F. Kaempf, Gamma Titanium Aluminides, ed. Y.-W. Kim, R. Wagner, and M. Yamaguchi (Warrendale, PA: TMS, 1995), p. 71.

    Google Scholar 

  38. M. Yoshihara, K. Miura, and Y.-W. Kim, Gamma Titanium Aluminides, ed. Y.-W. Kim, R. Wagner, and M. Yamaguchi (Warrendale, PA: TMS, 1995), p. 93.

    Google Scholar 

  39. Y. Shida and H. Anada, Ox. Met., 45 (1/2) (1996), p. 197.

    CAS  Google Scholar 

  40. I.E. Locci et al., “Very Long Term Oxidation of Ti-48Al-2Cr-2Nb at 704°C in Air,” submitted to Scripta Mater.

  41. W.J. Brindley, unpublished research.

  42. Y.-W. Kim, JOM, 46 (7) (1994) p. 30.

    Article  CAS  Google Scholar 

  43. S. Jain and J.R. Roessler, U.S. patent 5,296,056 (1994).

    Google Scholar 

  44. M. Schutze and M. Schmitz-Niederau, Gamma Titanium Aluminides, ed. Y.-W. Kim, R. Wagner, and M. Yamaguchi (Warrendale, PA: TMS, 1995), p. 83.

    Google Scholar 

  45. J.I. Smialek et al., Mat. Res. Soc. Symp., vol. 364 (1995), p. 1273 (1995).

    CAS  Google Scholar 

  46. G.H. Meier, “Research on Oxidation and Embrittlement of Intermetallic Compounds in the U.S.,” to be published in Materials and Corrosion.

  47. W.J. Brindley et al., HITEMP Review-1994, NASA CP-10146, vol. II, paper 44 (1994).

    Google Scholar 

  48. A.H. Rosenberger, B.D. Worth, and S.J. Balsone, “Environmental Effects on the Fatigue Crack Growth of Gamma Titanium Aluminides,” to be published in the proceedings of Sixth International Fatigue Congress, Berlin (May, 1996).

  49. S.J. Balsone et al., Mat. Sci. and Eng., A192/193 (1995), p. 457.

    CAS  Google Scholar 

  50. S. Taniguchi, MRS Bulletin (October 1994), p. 31.

    Google Scholar 

  51. R. Streiff, Journal De Physique IV, Colloque C9, vol. 3 (1993), p. 17.

    CAS  Google Scholar 

  52. T. Shimizu, T. Iikubo, and S. Isobe, Mat. Sci. and Eng., A153 (1992), p. 602.

    CAS  Google Scholar 

  53. W.J. Brindley, J.I.. Smialek, and Q. Rouge, U.S. patent 5,116,690 (1992).

    Google Scholar 

  54. W.J. Brindley, J.I. Smialek, and M.A. Gedwill, HITEMP Review-1992, NASA CP-l0l04, vol. II, paper 41 (1992).

    Google Scholar 

  55. D.W. McKee, Mat. Res. Soc. Proc., 288 (1993), p. 953.

    CAS  Google Scholar 

  56. D.W. McKee and K.I. Luthra, Surface and Coatings Technology, 56 (1993), p. 109.

    CAS  Google Scholar 

  57. R. Streiff and S. Poize, High Temperature Corrosion, ed. R.A. Rapp (Houston, TX: NACE, 1983), p. 591.

    Google Scholar 

  58. H. Mabuchi, T. Asai, and Y. Nakayama, Scripta Met., 23 (1989), p. 685.

    CAS  Google Scholar 

  59. J.I. Smialek, M.A. Gedwill, and P.K. Brindley, Scripta Met. et Mater., 24 (1990), p. 1291.

    CAS  Google Scholar 

  60. M. Yoshihara, T. Suzuki, and R. Tanaka, ISIJ International, 31 (10) (1991), p. 1201.

    CAS  Google Scholar 

  61. J.I. Smialek, Corrosion Science, 35 (5–8) (1993), p. 1199.

    CAS  Google Scholar 

  62. C. Leyens, M. Peters, and W.A. Kaysser, “Influence of Intermetallic Ti-Al Coatings on the Creep Properties of Timetal 1100,” submitted to Scripta Mater.

  63. T.C. Munro and B. Gleeson, “The Deposition of Aluminide and Silicide Coatings on ψ-TiAl Using the Halide-Activated Pack Cementation Method,” Met. Mat. Trans., in press.

  64. R.P. Skowronski, J. Am. Ceram. Soc., 77 (4) (1994), p. 1098.

    CAS  Google Scholar 

  65. W.C. Revelos and P.R. Smith, Met. Trans. A, 23A (1992), p. 587.

    CAS  Google Scholar 

  66. B. Cockeram and R.A. Rapp, Ox. Met., 45 (5/6) (1996), p. 427.

    CAS  Google Scholar 

  67. W.J. Brindley and P.A. Bartolotta, unpublished research.

  68. R.A. Perkins and G.H. Meier, Proceedings of the Industry University Advanced Materials Conference II, ed. F. Smith (Golden, CO: Advanced Materials Institute, 1989), p. 92.

    Google Scholar 

  69. J.C. Schaeffe et al., GE Aircraft Engines final report, Naval Air Development Center contract N62269-90-C-0287 (1993).

    Google Scholar 

  70. R.I. McCarron et al., Titanium 1992, ed. F.H. Froes and I. Caplan (Warrendale, PA: TMS, 1993), p. 1971.

    Google Scholar 

  71. M.P. Brady, J.I.. Smialek, and F. Terepka, Scripta Met. Mater., 32 (10) (1995), p. 1659.

    CAS  Google Scholar 

  72. M.P. Brady, J.I. Smialek, and D.I. Humphrey, Mat. Res. Soc. Symp., vol. 364 (1995), p. 1309.

    CAS  Google Scholar 

  73. J.I. Klansky, J.P. Nic, and D.E. Mikkola, J. Mater. Res., 9 (1994), p. 255.

    CAS  Google Scholar 

  74. T.J. Jewett and M. Dahms, Z. Metallkunde, 87 (1996).

    Google Scholar 

  75. M.P. Brady et al., “The Role of Cr in Promoting Protective Alumina Scale Formation by ψ-Based Ti-Al-Cr Alloys: Part —Compatibility with Alumina and Oxidation Behavior in Oxygen,” to be published in Acta Met.

  76. T.J. Jewett, B. Ahrens, and M. Daluns, “Phase Equilibria Involving the γ-L12 and TiAl2 Phases in the Ti-Al-Cr System,” Intermetallics, in press.

  77. S.-C. Huang and E.I. Hall, Met. Trans. A, 22A (1991), p. 2619.

    CAS  Google Scholar 

  78. M.P. Brady, J.I. Smialek, and W.J. Brindley, submitted to U.S. patent office (1996).

  79. F.H. Hayes, J. Phase Equilibria, 13 (1) (1992), p. 79.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brady, M.P., Brindley, W.J., Smialek, J.L. et al. The oxidation and protection of gamma titanium aluminides. JOM 48, 46–50 (1996). https://doi.org/10.1007/BF03223244

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03223244

Keywords

Navigation