Skip to main content
Log in

Cutting fluid effluent removal by adsorption on chitosan and sds-modified chitosan

  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

This study examined the adsorption of a synthetic cutting fluid and cutting fluid effluent on chitosan and SDS-modified chitosan. Chitosan and SDS-modified chitosan were prepared in form of beads and fibers. A series of batch experiments were carried out as a function of the initial concentration of cutting fluid, contact time and pH of the fluid. The contact angle study suggested that the SDS-modified chitosan was more hydrophobic than chitosan. The Zeta potential study showed that chitosan, SDS-modified chitosan and synthetic cutting fluid had a point of zero charge (PZC) at pH 7.8, 9 and 3.2, respectively. SDS-modified chitosan has a greater adsorption capacity than chitosan. The experimental results show that adsorption capacity of the cutting fluid on 1.0 g of SDS-modified chitosan at pH 3 and for a contact time of 120 min was approximately 2,500 g/kg. The adsorption capacity of chitosan and SDS-modified chitosan increased with decreasing pH. The Langmuir, Freundlich, and Brunauer Emmett and Teller (BET) adsorption models were used to explain the adsorption isotherm. The Langmuir isotherm fitted well with the experimental data of chitosan while the BET isotherm fitted well with the SDS-modified chitosan data. Pseudo first- and second-order kinetic models and intraparticle diffusion model were used to examine the kinetic data. The experimental data was fitted well to a pseudo second-order kinetic model. The significant uptake of cutting fluid on chitosan and SDS-modified chitosan were demonstrated by FT-IR spectroscopy, SEM and heat of combustion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

BET constant

A :

Langmuir constant

B :

Langmuir constant

c :

concentration of cutting fluid at equilibrium stage [g/m3]

C :

concentration of cutting fluid remaining in solution

C e :

equilibrium concentration of cutting fluid [g/m3]

C o :

initial cutting fluid concentration [g/m3]

C s :

saturation concentration of cutting fluid [g/m3]

e 1 :

correction in calories for heat of formation of nitric

e 2 :

correction in calories for heat of formation of sulfuric

e 3 :

correction in calories for heat of formation of fuse wire [J]

H g :

gross heat of combustion [J/g]

K :

Freundlich constant

k 1 :

rate constant of pseudo first-order adsorption [1/min]

k 2 :

rate constant of pseudo second-order adsorption [kg/gmin]

k i :

intraparticle diffusion rate constant (g/kg-min0.5)

m :

weight of adsorbent [kg]

M :

weight of sample [g]

n :

Freundlich constant

q e :

adsorption capacity [g/kg]

q t :

amount of adsorption at time t [g/kg]

R 2 :

correlative coefficient

R L :

separation factor

t :

time [minute]

T :

net corrected temperature rise [K]

V :

volume of cutting fluid [m3]

W :

energy equivalent of calorimeter [J/K]

x :

amount of cutting fluid adsorbed [kg]

x m :

amount of cutting fluid adsorbed corresponding to complete monolayer coverage [g/kg]

References

  1. J. Marchese, N. A. Ochoa, C. Pagliero, and C. Almandoz,Environ. Sci. Technol.,34, 2990 (2000).

    Article  CAS  Google Scholar 

  2. G. Ríos, C. Pazos, and J. Coca,Colloid Surface A,138, 383 (1998).

    Article  Google Scholar 

  3. A. Y. Hosny,Sep. Technol.,6, 9 (1996).

    Article  CAS  Google Scholar 

  4. N. Moulai Mostefa and M. Tir,Desalination,161, 115 (2004).

    Article  Google Scholar 

  5. M. Belkacem, H. Matamoros, C. Cabassud, Y. Aurelle, and J. Cotteret,J. Membrane Sci.,106, 195 (1995).

    Article  CAS  Google Scholar 

  6. P. Janknecht, A. D. Lopes, and A. M. Mendes,Environ. Sci. Technol.,38, 4878 (2004).

    Article  CAS  Google Scholar 

  7. J. R. Portela, J. López, E. Nebot, and E. Martínez de la Ossa,J. Hazard. Mater.,88, 95 (2001).

    Article  CAS  Google Scholar 

  8. T. Viraraghavan and G. N. Mathavan,Oil Chem. Pollut.,4, 261 (1988).

    Article  CAS  Google Scholar 

  9. C. Solisio, A. Lodi, A. Converti, and M. D. Borghi,Water Res.,36, 899 (2002).

    Article  CAS  Google Scholar 

  10. B. C. Son, K. Park, S. H. Song, and Y. J. Yoo,Korean J. Chem. Eng.,21, 1168 (2004).

    Article  CAS  Google Scholar 

  11. S. E. Bailey, T. J. Olin, R. M. Bricka, and D. D. Adrian,Water Res.,33, 2469 (1999).

    Article  CAS  Google Scholar 

  12. V. M. Boddu, K. Abburi, J. L. Talbott, and E. D. Smith,Environ. Sci. Technol.,37, 4449 (2003).

    Article  CAS  Google Scholar 

  13. J. R. Evans, W. G. Davids, J. D. MacRae, and A. Amirbahman,Water Res.,36, 3219 (2002).

    Article  CAS  Google Scholar 

  14. C. Jeon and W. H. Hll,Water Res.,37, 4770 (2003).

    Article  CAS  Google Scholar 

  15. W. S. Wan Ngah, C. S. Endud, and R. Mayanar,React. Funct. Polym.,50, 181 (2002).

    Article  Google Scholar 

  16. A. R. Cestari, E. F. S. Vieira, A. G. P. dos Santos, J. A. Mota, and V. P. de Almeida,J. Colloid Interf. Sci.,280, 380 (2004).

    Article  CAS  Google Scholar 

  17. M.-S. Chiou, P.-Y. Ho, and H.-Y. Li,Dyes and Pigments,60, 69 (2004).

    Article  CAS  Google Scholar 

  18. A. L. Ahmad, S. Sumathi, and B. H. Hameed,Water Res.,39 2483 (2005).

    Article  CAS  Google Scholar 

  19. A. L. Ahmad, S. Sumathi, and B. H. Hameed,Chem. Eng. J.,108 179 (2005).

    Article  CAS  Google Scholar 

  20. S. Pongstabodee, K. Piyamongkala, and L. Mekasut, Thai Patent No.0601004582.

  21. X. Zhang and R. Bai,J. Colloid Interf. Sci.,264, 30 (2003).

    Article  CAS  Google Scholar 

  22. A. I. Zouboulis and A. Avranas,Colloid Surface A,172, 153 (2000).

    Article  CAS  Google Scholar 

  23. J. M. Montgomery,Water Treatment Principles and Design, John Wiley and Sons, Inc., New York, 1985.

    Google Scholar 

  24. L. D. Benefield, J. F. Judkins, and B. L. Weand,Processes Chemistry for Water and Wastewater Treatment, Prentice-Hall, Inc., Englewood, 1982.

    Google Scholar 

  25. D. L. Pavia, G. M. Lampman, and G. S. Kriz,Introduction to Spectroscopy, 3ed, Harcourt College Publishers, Orlando, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piyamongkala, K., Mekasut, L. & Pongstabodee, S. Cutting fluid effluent removal by adsorption on chitosan and sds-modified chitosan. Macromol. Res. 16, 492–502 (2008). https://doi.org/10.1007/BF03218550

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03218550

Keywords

Navigation