Skip to main content
Log in

Patterns of genetic variation within a captive population of Amur tigerPanthera tigris altaica

  • Published:
Acta Theriologica Aims and scope Submit manuscript

Abstract

Eight founders and thirty-one descendants were sampled as the Founder group and the Offspring group respectively from a captive population of Amur tigerPanthera tigris altaica Temminck, 1844 for population genetic analysis with RAPD and ISSR markers. Integrated with demographic data during the initial recovery stage, results showed: (1) increasing the population size (N) and the effective population size (N e) greatly retard lose of genetic variation induced mainly by genetic drift and selection; (2) recombination and admixture could cause the Offspring group (5.711%) and the Founder group (10.383%) to hold different linkage disequilibrium (LD); (3) further Ohta’s variance analysis indicated genetic drift (87.3%) and epistatic selection (12.7%) maintained LD in population, whereas GENEDROP analysis supported epistatic selection largely derived from artificial selection of managers; (4) both Tajima’s test and Fu’s test confirmed the statistic neutrality of genetic markers used, moreover the positive value of Tajima’sD (0.090) together with the result that π (25.286) was bigger than ϑ (24.898) revealed the Founder group was admixture population, while the negative Tajima’sD value (−0.053) together with the result that π (23.679) was less than ϑ (23.912) disclosed the Offspring group experienced selective sweep.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allendorf F. W. 1993. Delay of adaptation to captive breeding by equalizing family size. Conservation Biology 7: 416–419.

    Article  Google Scholar 

  • Black W. C. IV and Krafsur E. S. 1985. A FORTRAN program for the calculation and analysis of two-locus linkage disequilibrium coefficients. Theoretical and Applied Genetics 70: 491–496.

    Article  Google Scholar 

  • Borlase S. C., Loebel D. A., Frankham R., Nurthen R. K., Briscoe D. A. and Daggard G. E. 1993. Modeling problems in conservation genetics using captive Drosophila populations: Consequences of equalization of family sizes. Conservation Biology 7: 122–131.

    Article  Google Scholar 

  • Conrad K. 2000. Safety in numbers: review of the Breeding Center forFelidae at Hengdaohezi. Downloadable from http://www.5tigers.org

  • Crow J. F. and Kimura M. (eds) 1970. An introduction to population genetics theory. Harper & Row, New York: 150–155.

    Google Scholar 

  • Ellstrand N. C. and Elam D. R. 1993. Population genetic consequences of small population size: implications for plant conservation. Annual Review of Ecology and Systematics 24: 217–242.

    Article  Google Scholar 

  • Fernández J. and Caballero A. 2001. Accumulation of deleterious mutations and equalization of parental contributions in the conservation of genetic resources. Heredity 86: 480–488.

    Article  PubMed  Google Scholar 

  • Fiumera A. C., Parker P. G. and Fuerst P. A. 2000. Effective population size and maintenance of genetic diversity in captive-bred populations of a Lake Victoria Cichlid. Conservation Biology 14: 886–892.

    Article  Google Scholar 

  • Frankham R. 1986. Selection in captive populations. Zoo Biology 5: 127–138.

    Article  Google Scholar 

  • Frankham R. 1996. Relationship of genetic variation to population size in wildlife. Conservation Biology 10: 1500–1508.

    Article  Google Scholar 

  • Fu Y-X. 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147: 915–925.

    CAS  PubMed  Google Scholar 

  • Gillespie J. H. 1991. The cause of molecular evolution. Oxford University Press, New York: 1–250.

    Google Scholar 

  • Gupta S. 1996. The maintenance of strain structure in populations of recombining infectious agents. Nature Medicine 2: 437–442.

    Article  CAS  PubMed  Google Scholar 

  • Halley J. and Hoelzel A. R. 1996. Simulation models of bottleneck events in natural populations. [In: Molecular genetic approaches in conservation. T. B. Smithand and R. K. Wayne, eds]. Oxford University Press, New York: 347–364.

    Google Scholar 

  • Hedrick P. W. 1986. Protein variation, fitness and captive propagation. Zoo Biology 5: 91–99.

    Article  Google Scholar 

  • IUCN 1998. IUCN Guidelines for reintroductions. Nairobi, Kenya, IUCN/SSC Reintroductions Specialist Group.

    Google Scholar 

  • Loftin R. 1995. Captive breeding of endangered species. [In: Ethics on the Ark. B. G. Norton, ed]. Smithsonian Institution Press, Washington: 164–180.

    Google Scholar 

  • Meffe G. K. and Carroll R. 1997. The Species in Conservation. [In: Principles of conservation biology. G. K. Meffe and R. Carroll, eds]. Sinauer Associates Inc., Sunderland: 223–285.

    Google Scholar 

  • Nei M. (ed) 1975. Molecular population genetics and evolutions. North-Holland Publishing Company, Amsterdam: 110–380.

    Google Scholar 

  • Nei M. (ed) 1987. Molecular evolutionary genetics. Columbia University Press, New York: 1–400.

    Google Scholar 

  • Nei M., Maruyama T. and Chakraborty R. 1975. The bottleneck effect and genetic variability in populations. Evolution 29: 1–10.

    Article  Google Scholar 

  • Ohta T. 1982a. Linkage disequilibrium due to random genetic drift in finite subdivided populations. Proceedings of the National Academy of Sciences 79: 1940–1944.

    Article  CAS  Google Scholar 

  • Ohta T. 1982b. Linkage disequilibrium with the island model. Genetics 101: 139–155.

    CAS  PubMed  Google Scholar 

  • Rand D. M. 1996. Neutrality tests of molecular markers and the connection between DNA polymorphism, demography, and conservation biology. Conservation Biology 10: 665–671.

    Article  Google Scholar 

  • Schneider S., Roessli D. and Excoffier L. 2000. Arlequin ver 2.000: a software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland.

    Google Scholar 

  • Seidensticker J., Christie S. and Jackson P. (eds) 1999. Riding the tigers: tiger conservation in human-dominated landscapes. Cambridge University Press, Cambridge: 1–123.

    Google Scholar 

  • Slatkin M. 1994. Linkage disequilibrium in growing and stable population. Genetics 137: 331–336.

    CAS  PubMed  Google Scholar 

  • Smit-McBride Z., Moya A. and Ayala F. J. 1988. Linkage disequilibrium in natural and experimental populations ofDrosophila melanogaster. Genetics 120: 1043–1051.

    CAS  PubMed  Google Scholar 

  • Soulé M. E. 1976. Allozyme variation, its determinations in space and time. [In: Molecular evolution. F. J. Ayala, ed]. Sinauer Associates, Sunderland: 60–77.

    Google Scholar 

  • Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585–595.

    CAS  PubMed  Google Scholar 

  • Wedekind C. 2002. Sexual selection and life-history decisions: Implications for supportive breeding and the management of captive populations. Conservation Biology 16: 1204–1211.

    Article  Google Scholar 

  • Williams J. G., Kubelik A. R., Livak K. J., Rafalski J. A. and Tingey S. V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18: 6531–6535.

    Article  CAS  PubMed  Google Scholar 

  • Wright S. 1931. Evolution in Mendelian populations. Genetics 16: 97–159.

    CAS  PubMed  Google Scholar 

  • Zietkiewicz E., Rafalski A. and Labuda D. 1994. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20: 176–183.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Associate Editor was Joseph F. Merritt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, D., Liu, X. & Ma, J. Patterns of genetic variation within a captive population of Amur tigerPanthera tigris altaica . Acta Theriol 50, 23–30 (2005). https://doi.org/10.1007/BF03192615

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03192615

Key words

Navigation