Skip to main content
Log in

Genetic diversity and relatedness within packs in an intensely hunted population of wolvesCanis lupus

  • Published:
Acta Theriologica Aims and scope Submit manuscript

Abstract

A population of grey wolvesCanis lupus Linnaeus, 1758 inhabiting Białowieża Primeval Forest (BPF) on the Polish-Belarussian border has recovered after near extermination in the 1970s. Currently, it is intensively hunted in the Belarussian part of BPF and protected in the Polish part. We used a combination of molecular analysis, radiotracking, and field observation to study genetic diversity of the population after natural recolonisation and the consequences of heavy hunting for the genetic composition and social structure of wolf packs. Both microsatellite and mtDNA analyses revealed high genetic diversity. For 29 individuals and 20 microsatellite loci, the mean expected heterozygosity was 0.733. Four mtDNA haplotypes were found. Three of them had earlier been described from Europe. Their geographic distribution suggests that wolves recolonising BPF immigrated mainly from the north-east, and less effectively from the east and south-east. We traced the composition of 6 packs for a total of 26 pack-years. Packs were family units (a breeding pair with offspring) with occasional adoption of unrelated adult males, which occurred more frequently in packs living in the Belarussian part of the BPF, due to heavy hunting and poaching. Breeding pairs were half-sibs or unrelated wolves. Pair-bonds in the breeding pair lasted from 1 to 4 years and usually broke by the death of one or both mates. Successors of breeding females were their daughters, while a successor of a breeding male could be either his son or an alien wolf. As is evident from Białowieża’s wolves, high genetic diversity may result from immigration of outside individuals, which are easily recruited to a heavily exploited local population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersone Z., Lucchini V., Randi E. and Ozolins J. 2002. Hybridisation between wolves and dogs in Latvia as documented using mitochondrial and microsatellite DNA markers. Mammalian Biology 67: 97–90.

    Article  Google Scholar 

  • Caughley G. 1996. Conservation biology in theory and practice. Blackwell Science, Cambridge, MA.

    Google Scholar 

  • Ciucci P. and Boitani L. 1991. Viability assessment of the Italian wolf and guidelines for the management of the wild and a captive population. Ricerche di Biologia della Selvaggina 89: 1–58. [In Italian with English summary]

    Google Scholar 

  • Ellegren H. 1999. Inbreeding and relatedness in Scandinavian grey wolvesCanis lupus. Hereditas 130: 239–244.

    Article  CAS  PubMed  Google Scholar 

  • Ellegren H., Savolainen P. and Rosen B. 1996. The genetical history of an isolated population of the endangered grey wolfCanis lupus: as tudy of nuclear and mitochondrial polymorphisms. Philosophical Transactions of the Royal Society, London, B 351: 1661–1669.

    Article  CAS  Google Scholar 

  • Faliński J. B. 1986. Vegetation dynamics in temperate lowland primeval forests. Ecological studies in Białowieża Forest. Dr W. Junk Publishers, Dordrecht, Holland: 1–537.

    Google Scholar 

  • Flagstad Ø., Walker C. W., Vila C., Sundqvist A.-K., Fernholm B., Hufthammer A. K., Wiig Ø., Koyola I. and Ellegren H. 2003. Two centuries of the Scandinavian wolf population: patterns of genetic variability and migration during an era of dramatic decline. Molecular Ecology 12: 869–880.

    Article  CAS  PubMed  Google Scholar 

  • Forbes S. H. and Boyd D. K. 1996. Genetic variation of naturally colonising wolves in the Central Rocky Mountains. Conservation Biology 10: 1082–1090.

    Article  Google Scholar 

  • Francisco L. V., Langston A. A., Mellersh C. S., Neal C. L. and Ostrander E. A. 1996. A class of highly polymorphic tetranucleotide repeats for canine genetic mapping. Mammalian Genome 7: 359–362.

    Article  CAS  PubMed  Google Scholar 

  • Fredholm M. and Wintero A. K. 1995. Variation of short tandem repeats within and between species belonging to the Canidae family. Mammalian Genome 6: 11–18.

    Article  CAS  PubMed  Google Scholar 

  • Fritts S. H. and Mech L. D. 1981. Dynamics, movements, and feeding ecology of a newly protected wolf population in north-western Minnesota. Wildlife Monographs 80: 5–79.

    Google Scholar 

  • Guo S. and Thompson E. 1992. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48: 361–372.

    Article  CAS  PubMed  Google Scholar 

  • Jędrzejewska B. and Jędrzejewski W. 1998. Predation in vertebrate communities. The Białowieża Primeval Forest as a case study. Springer, Berlin, Germany: 1–450.

    Google Scholar 

  • Jędrzejewska B., Jędrzejewski W., Bunevich A. N., Miłkowski L. and Okarma H. 1996. Population dynamics of wolvesCanis lupus in Białowieża Primeval Forest (Poland and Belarus) in relation to hunting by humans, 1847–1993. Mammal Review 26: 103–126.

    Article  Google Scholar 

  • Jędrzejewski W., Jędrzejewska B., Okarma H., Schmidt K., Zub K. and Musiani M. 2000. Prey selection and predation by wolves in Białowieża Primeval Forest, Poland. Journal of Mammalogy 81: 197–212.

    Article  Google Scholar 

  • Jędrzejewski W., Schmidt K., Theuerkauf J., Jędrzejewska B., Selva N., Zub K. and Szymura L. 2002. Kill rates and predation by wolves on ungulate populations in Białowieża Primeval Forest (Poland). Ecology 83: 1341–1356.

    Google Scholar 

  • Jędrzejewski W., Schmidt K., Jędrzejewska B., Theuerkauf J., Kowalczyk R. and Zub K. 2004. The process of a wolf pack splitting in Białowieża Primeval Forest, Poland. Acta Theriologica 49: 275–280.

    Google Scholar 

  • Lehman N., Eisenhawer A., Hansen K., Mech L. D., Peterson R. O., Gogan P. J. P. and Wayne R. K. 1991. Introgression of coyote mitochondrial DNA into sympatric North American gray wolf populations. Evolution 45: 104–119.

    Article  Google Scholar 

  • Lehman N., Clarkson P., Mech L. D., Meier T. J. and Wayne R. K. 1992. A study of the genetic relationships within and among wolf packs using DNA fingerprinting and mitochondrial DNA. Behavioural Ecology and Sociobiology 30: 83–94.

    Article  Google Scholar 

  • Lorenzini R. and Fico R. 1995. A genetic investigation of enzyme polymorphism shared by wolf and dog: suggestions for conservation of the wolf in Italy. Acta Theriologica, Suppl. 3: 101–110.

    Google Scholar 

  • Lucchini V., Galov A. and Randi E. 2004. Evidence of genetic distinction and long-term population decline in wolves (Canis lupus) in the Italian Apennines. Molecular Ecology 13: 523–536.

    Article  CAS  PubMed  Google Scholar 

  • Marshall T. C., Slate J., Kruuk L. and Pemberton J. M. 1998. Statistical confidence for likelihood-based paternity inference in natural populations. Molecular Ecology 7: 639–655.

    Article  CAS  PubMed  Google Scholar 

  • Meier T. J., Burch J. W., Mech L. D. and Adams L. G. 1995. Pack structure and genetic relatedness among wolf packs in a naturally-regulated population. [In: Ecology and conservation of wolves in a changing world, L. N. Carbyn, S. H. Fritts, D. R. Seip, eds]. Canadian Circumpolar Institute, University of Alberta, Edmonton: 293–302.

    Google Scholar 

  • Nei M. 1978. Estimation of average heterozigosity and genetic distance from a small number of individuals. Genetics 89: 583–590.

    CAS  PubMed  Google Scholar 

  • Okarma H. and Jędrzejewski W. 1997. Livetrapping wolves with nets. Wildlife Society Bulletin 25: 78–82.

    Google Scholar 

  • Okarma H., Jędrzejewski W., Schmidt K., OEnieżko S., Bunevich A. N. and Jędrzejewska B. 1998. Home ranges of wolves in Białowieża Primeval Forest, Poland, compared with other Eurasian populations. Journal of Mammalogy 79: 842–852.

    Article  Google Scholar 

  • Paetkau D., Slade R., Burdens M. and Estoup A. 2004. Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Molecular Ecology 13: 55–65.

    Article  CAS  PubMed  Google Scholar 

  • Piry S., Alapetite A., Cornuet J.-M., Paetkau D., Baudouin L. and Estoup A. 2004. GeneClass2: a software for genetic assignment and first-generation migrants detection. Journal of Heredity 95: 536–539.

    Article  CAS  PubMed  Google Scholar 

  • Promberger C. and Schröder W. (eds) 1992. Wolves in Europe — Status and perspectives. Proceedings of the workshop, Oberammergau, Germany, 2–5 April, 1992. Munich Wildlife Society, Germany: 1–132.

    Google Scholar 

  • Queller D. C. and Goodnight K. F. 1989. Estimating relatedness using genetic markers. Evolution 43: 258–275.

    Article  Google Scholar 

  • Randi E., Lucchini V., Christensen M. F., Mucci N., Funk S. M., Dolf G. and Loeschcke V. 2000. Mitochondrial DNA variability in Italian and East European wolves: detecting the consequences of small population size and hybridization. Conservation Biology 14: 464–473.

    Article  Google Scholar 

  • Randi E. and Lucchini V. 2002. Detecting rare introgression of domestic dog genes into wild wolf (Canis lupus) populations by Bayesian admixture analyses of microsatellite variation. Conservation Genetics 3: 31–45.

    Article  CAS  Google Scholar 

  • Rannala B. and Mountain J. L. 1997. Detecting immigration by using multilocus genotypes. Proceedings of the National Academy of Sciences (USA) 94: 9197–9221.

    Article  CAS  Google Scholar 

  • Raymond M. and Rousset F. 1995. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. Journal of Heredity 86: 248–249.

    Google Scholar 

  • Roy M. S., Geffen E., Smith D., Ostander E. A. and Wayne R. K. 1994. Patterns of differentiation and hybridization in North American wolflike canids, revealed by analysis of microsatellite loci. Molecular Biology and Evolution 11: 553–570.

    CAS  PubMed  Google Scholar 

  • Sambrook J., Fritsch E. F. and Maniatis T. 1989. Molecular cloning: A laboratory manual. 2nd edition. Cold Spring Harbor Press, New York.

    Google Scholar 

  • Savolainen P., Rosen B., Holmberg A., Leitner T., Uhlen M. and Lundeberg J. 1997. Sequence analysis of domestic dog mitochondrial DNA for forensic use. Journal of Forensic Science 42: 593–600.

    CAS  Google Scholar 

  • Schneider S., Roessli D. and Excoffier L. 2000. ARLEQUIN version 2.0. A software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva.

  • Tsuda K., Kikkawa Y., Yonekawa H. and Tanable Y. 1997. Extensive interbreeding occurred among multiple matriarchal ancestors during the domestication of dogs: evidence from inter- and intraspecies polymorphism in the D-loop region of mitochondrial DNA between dogs and wolves. Genes and Genetic Systems 72: 229–238.

    Article  CAS  PubMed  Google Scholar 

  • Vila C., Savolainen P., Maldonado J. E., Amorim I. R., Rice J. E., Honeycutt R. L., Crandall K. A., Lundeberg J. and Wayne R. K. 1997. Multiple and ancient origin of the domestic dog. Science 276: 1687–1689.

    Article  CAS  PubMed  Google Scholar 

  • Vila C., Amorim I. R., Leonard J. A., Posada D., Castroviejo J., Petrucci-Fonseca F., Crandall K. A., Ellegren H. and Wayne R. K. 1999. Mitochondrial DNA phylogeography and population history of the grey wolfCanis lupus. Molecular Ecology 8: 2089–2103.

    Article  CAS  PubMed  Google Scholar 

  • Vila C., Sundqvist A.-K., Flagstad Ø., Seddon J., Bjornerfeldt S., Kojola I., Casulli A., Sand H., Wabakken P. and Ellegren H. 2003. Rescue of a severely bottlenecked wolf (Canis lupus) population by a single immigrant. Proceedings of the Royal Society of London B 270: 91–97.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Associate Editor was Andrzej Zalewski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jędrzejewski, W., Branicki, W., Veit, C. et al. Genetic diversity and relatedness within packs in an intensely hunted population of wolvesCanis lupus . Acta Theriol 50, 3–22 (2005). https://doi.org/10.1007/BF03192614

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03192614

Keywords

Navigation