Skip to main content
Log in

Characterization of lidocaine metabolism by rat nasal microsomes: implications for nasal drug delivery

  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Summary

Lidocaine has been recently approved for use as an intranasal spray in the treatment of migraine. In this study, we investigated the metabolism of lidocaine to its primary metabolite monoethylglycine xylidide (MEGX), by rat nasal olfactory and respiratory microsomes. The metabolic parameters were compared with metabolism employing rat and human hepatic microsomes. The olfactory and respiratory microsomes both exhibited considerable activity for conversion of lidocaine to MEGX in comparison with the activity in the hepatic tissues. The rat olfactory microsomes had a markedly higher affinity than the rat hepatic or respiratory microsomes. However, the turnover rate was only about one-half that of rat liver. Employing Western immunoblotting we investigated the presence of cytochrome P450s (CYPs) 1A2, 3A2, 2B1 and 2C11 in rat nasal tissues; these isozymes are known to participate in the metabolism of lidocaine in rat liver. These isozymes were found to be present in significant amounts in both the nasal olfactory and respiratory tissue; this is the first known report of the presence of CYP2C11 in nasal mucosae. Our studies underscore the importance of CYP-mediated drug metabolism in nasal tissues. The effect of this ‘nasal first-pass’ should be weighed carefully while considering the fate and the bioavailability of drugs delivered via the intranasal route.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kudrow L., Kudrow D.B., Sandweiss J.H. (1995): Rapid and sustained relief of migraine attacks with intranasal lidocaine: preliminary findings. Headache, 35: 79–82.

    Article  CAS  PubMed  Google Scholar 

  2. Hermansson J., Glaumann H., Karlen B., Von Bahr C. (1980): Metabolism of lidocaine in human liver in vitro. Acta Pharmacol. Toxicol., 47, 49–52.

    CAS  Google Scholar 

  3. Imaoka S., Enomoto K., Oda Y. et al. (1990): Lidocaine metabolism by human cytochrome P-450s purified from hepatic microsomes: comparison of those with rat hepatic cytochrome P-450s. J. Pharmacol. Exp. Ther., 255, 1385–1391.

    CAS  PubMed  Google Scholar 

  4. Parker RJ., Collins J.M., Strong J.M. (1996): Identification of 2,6-xylidide as a major lidocaine metabolite in human liver slices. Drug Metab. Dispos., 24, 1167–1173.

    CAS  PubMed  Google Scholar 

  5. Imaoka S., Yamada T., Hiroi T. et. al. (1996): Multiple forms of human P450 expressed inSaccharomyces cerevisiae: systemic characterization and comparison with those of the rat. Biochem. Pharmacol., 51: 1041–1050.

    Article  CAS  PubMed  Google Scholar 

  6. Sallie R.W., Tredger J.M., Williams R. (1992): Extrahepatic production of the lignocaine metabolite monoethylglycinexylidide (MEGX). Biopharm. Drug Dispos., 13: 555–558.

    Article  CAS  PubMed  Google Scholar 

  7. Tanaka K., Oda Y., Asada A., Fujimori M., Funae Y. (1994): Metabolism of lidocaine by rat pulmonary cytochrome P450. Biochem. Pharmacol., 47, 1061–1066.

    Article  CAS  PubMed  Google Scholar 

  8. Sarkar M.A. (1992): Drug metabolism in the nasal mucosa. Pharm. Res., 9, 1–9.

    Article  CAS  PubMed  Google Scholar 

  9. Blumer J., Strong J.M., Atkinson AJ. (1973): The convulsant potency of lidocaine and its N-dealkylated metabolites. J. Pharmacol. Exp. Ther., 186: 31–36.

    CAS  PubMed  Google Scholar 

  10. Haseman J.K., Crawford D.D., Huff J.E., Boorgman G.A., McConnell E.E. (1984): Results from 86 2-year carcinogenicity studies conducted by the National Toxicology Program. J. Toxicol. Environ. Health, 14: 621–640.

    Article  CAS  PubMed  Google Scholar 

  11. Haseman, J.K., Hailey, J.R. (1997): An update of the National Toxicology Program database on nasal carcinogens. Mutat. Res., 380: 3–11.

    CAS  PubMed  Google Scholar 

  12. Maizels M., Scott B., Cohen W, Chen W. (1996): Intranasal lidocaine for treatment of migraine: a randomized, doubleblind, controlled trial. JAMA, 276, 319–321.

    Article  CAS  PubMed  Google Scholar 

  13. Genter M.B., Deamer N.J., Cao Y., Levi P.E. (1994): Effects of P450 inhibition and induction on the olfactory toxicity of β, β′ iminodipropionitrile (IDPN) in the rat. J. Biochem. Toxicol., 9: 31–39.

    Article  CAS  PubMed  Google Scholar 

  14. Kawai R., Fujita S., Suzuki T. (1985): Simultaneous quantitation of lidocaine and its four metabolites by high-performance liquid chromatography: application to studies onin vitro andin vivo metabolism of lidocaine in rats. J. Pharm. Sci., 74: 1219–1224.

    Article  CAS  PubMed  Google Scholar 

  15. Akaike A. (1978): Posterior probabilities for choosing a regression model. Ann. Inst. Math. Stat., 30: A9-A14.

    Article  Google Scholar 

  16. Schwarz G. (1978): Estimating the dimension of a model. Ann. Stat., 6: 461–464.

    Article  Google Scholar 

  17. Moore K.H., Hussey, E.K., Shaw S., Fuseau E., Duquesnoy C., Pakes G.E. (1997): Safety, tolerability, and pharmacokinetics of sumatriptan in healthy subjects following ascending single doses and multiple intranasal doses. Cephalgia, 17: 541–550.

    Article  CAS  Google Scholar 

  18. Gallagher R.M. (1996): Acute treatment of migraine with dihydroergotamine nasal spray. Arch. Neurol., 53: 1285–1291.

    CAS  PubMed  Google Scholar 

  19. Melanson S.W., Morse J.W., Pronchik D.J., Heller, M.B. (1997): Transnasal butorphanol in the emergency department management of migraine headache. Am. J. Emerg. Med., 15: 57–61.

    Article  CAS  PubMed  Google Scholar 

  20. Levy R.L. (1995): Intranasal capsaicin for acute abortive treatment of migraine without aura. Headache, 35: 277.

    Article  CAS  PubMed  Google Scholar 

  21. Sakane T., Akizuki M., Taki Y, Yamashita S., Sezaki H., Nadai T. (1995). Direct drug transport from the rat nasal cavity to the cerebrospinal fluid: the relation to the molecular weight of drugs. J. Pharm. Pharmacol., 47: 379–381.

    CAS  PubMed  Google Scholar 

  22. Dahl A.R., Hadley W.M. (1991): Nasal cavity enzymes involved in xenobiotic metabolism: effects on the toxicity of inhalants. Crit. Rev. Toxicol., 21: 345–372.

    Article  CAS  PubMed  Google Scholar 

  23. Genter M.B., Liang H.C., Gu J. et al. (1998): Role of CYP2A5 and 2G1 in acetaminophen metabolism and toxicity in the olfactory mucosa of theCypla2(-/-) mouse. Biochem. Pharmacol., 55: 1819–1826.

    Article  CAS  PubMed  Google Scholar 

  24. Bogdanffy M.S., Mathison B.H., Kuykendall J.R., Harman A.E. (1997): Critical factors in assessing risk from exposure to nasal carcinogens. Mutat. Res., 380, 125–141.

    CAS  PubMed  Google Scholar 

  25. Harkema J.R. (1990): Comparative pathology of the nasal mucosa in laboratory animals exposed to inhaled irritants. Enivron. Health Perspect., 85: 235–238.

    Google Scholar 

  26. Jafek B.W., Johnson E.W., Eller P.M., Murrow B. (1997): Olfactory mucosal biopsy and related histology. In: Seiden A.M. (ed.) Taste and Smell Disorders, New York: Theime Medical, 107–127.

    Google Scholar 

  27. Gervasi P.G., Longo V., Naldi F., Panattoni G., Ursino F. (1991): Xenobiotic metabolizing enymes in human respiratory nasal mucosa. Biochem. Pharmacol., 41, 177–184.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deshpande, V.S., Genter, M.B., Jung, C. et al. Characterization of lidocaine metabolism by rat nasal microsomes: implications for nasal drug delivery. Eur. J. Drug Metab. Pharmacokinet. 24, 177–182 (1999). https://doi.org/10.1007/BF03190366

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03190366

Keywords

Navigation