Skip to main content
Log in

QGP phase transition and multiplicity fluctuations

  • Science in China (series A)
  • Published:
Science in China Series A: Mathematics Aims and scope Submit manuscript

Abstract

The scaled factorial moments in QGP phase transitions are studied analytically by the extended Ginzburg-Landau model. The dependence of lnF q on phase space interval is different for the first- and second-order QGP phase transitions. When lnF q, are fitted to polynomials ofX≡δ1/3, the relative sign between the fitted coefficients ofX andb q,1 calculated theoretically can be used to judge the order of phase transitions. Two sets of experimental data are reanalysed and the phase transitions are the first order for one set of data but the second order for another.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shuryak, E., The phases of QCD,Summary Talk at RHIC Summer Studies, Brookhaven, 1996.

  2. Svetisky, B., Yaffe, L.G., Critical behavior at finite-temperature confinement transitions,Nucl. Phys., 1982, B210:1980.

    Google Scholar 

  3. Kennedy, A. D., Kuti, J., Meyer, S.et al., Where is the continuum in lattice quantum chromodynamics,Phys. Rev. Lett., 1985, 54:87.

    Article  Google Scholar 

  4. Gottlieb, S., Kuti, J., Toussaint, D.et al., Deconfining phase transition and the continuum limit in lattice quantum chromodynamics,Phys. Rev. Lett., 1985, 55:1958.

    Article  Google Scholar 

  5. Wu, E. Y., The Potts model,Rev. Mod. Phys., 1982, 54:235.

    Article  Google Scholar 

  6. Fucito, F., Vulpiani, A., Phase transition in three-dimensional three-state Potts model,Phys. Lett., 1982, A89:34.

    Google Scholar 

  7. Bacilieri, P., Remiddi, E., Todesco, G. M.et al., Order of the deconfining phase transition in pure-gauge QCD,Phys. Rev. Lett., 1988, 61:1545.

    Article  Google Scholar 

  8. Celik, T., Engels, J., Satz, H., Deconfinement and virtual quark loops,Phys. Lett., 1983, B133:427.

    Google Scholar 

  9. Lifshitz, E. M., Pitaevskii, L. P.,Statistical Physics, Oxford: Pergamon, 1980, 2.

    Google Scholar 

  10. Carruthers, P., Sarcevic, I., KNO scaling as a phase transition of a Feynman-Wilson ‘Gas’,Phys. Lett., 1987, B189: 442.

    Google Scholar 

  11. Dremin, I., Nazirov, M. T., Phase transitions and scaling in multiparticle production, inProceedings of the Ringberg Workshop, Ringberg, Castle, Germany, 1991 (eds. Hwa, R. C., Ochs, W., Schmitz, N.), Singapore: World Scientific, 1992.

    Google Scholar 

  12. Elze, H.-T., Sarcevic, I., Statistical field theory of multiparticle density fluctuation,Phys. Rev. Lett., 1992, 68:1988.

    Article  Google Scholar 

  13. Sarcevic, I. A statistical field theory of density fluctuations in heavy-ion collisions, inProceedings of the Ringberg Workshop, Ringberg, Castle, Germany, 1991 (ed. Hwa, R. C., Ochs, W., Schmitz, N.), Singapore: World Scientific, 1992.

    Google Scholar 

  14. Hwa, R. C., Nazirov, M. T., Intermittency in second-order phase transitions,Phys. Rev. Lett., 1992, 69:741.

    Article  Google Scholar 

  15. Hwa, R.C., Pan, J., Intermittency in the Ginzburg-Landau theory,Phys. Lett., 1992, B297:35.

    Google Scholar 

  16. Hwa, R. C., Scaling exponent of multiplicity fluctuation in phase transition,Phys. Rev., 1993, D47:2773.

    Google Scholar 

  17. Hwa, R. C., Pan, J., Scaling behavior in first-order quark-hadron phase transition,Phys. Rev., 1994, C50:383.

    Google Scholar 

  18. Mohanty, A. K., Kataria, S. K., Intermittency in quark-gluon-plasma phase transition,Phys. Rev. Lett., 1994, 73: 2672.

    Article  Google Scholar 

  19. Babichev, L. F., Klenitsky, D. V., Kuvshinov, V. I., Intermittency in the Ginzburg-Landau model for first-order phase transitions,Phys. Lett., 1995, B345:269.

    Google Scholar 

  20. Cai, X., Yang, C. B., Zhou, Z. M., Analytical study of factorial moments for first- and second-order phase transitions,Phys. Rev., 1996, C54:2775.

    Google Scholar 

  21. Bialas, A., Peschanski, R., Moments of rapidity distributions as a measure of short-range fluctuations in high-energy collisions,Nucl. Phys., 1986, B273:703.

    Article  Google Scholar 

  22. Bialas, A., Peschanski, R., Intermittency in multiparticle production at high energy,Nucl. Phys., 1988, B308:857.

    Article  Google Scholar 

  23. Adamovich, M. I., Aggarwal, M. M., Alexandrov, Y. A.et al., On intermittency in heavy-ion collision and the importance of γ-conversion in a multi-dimensional analysis,Nucl. Phys., 1992, B388:3.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Project supported by the National Natural Science Foundation of China and Natural Science Foundation of Hubei Province.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, C., Wang, X. & Cai, X. QGP phase transition and multiplicity fluctuations. Sci. China Ser. A-Math. 40, 1065–1072 (1997). https://doi.org/10.1007/BF03182366

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03182366

Keywords

Navigation