Skip to main content
Log in

Effect of phosphorus deficiency on acid phosphatase and phytase activities in common bean (Phaseolus vulgaris L.) under symbiotic nitrogen fixation

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Changes in growth, symbiotic nitrogen fixation (SNF), acid phosphatase (ACP), and phytase activities to phosphorus availability (15 and 60 μmol KH2PO4 plant−1 week−1) were compared in two recombinant lines (115 and 147) of common bean. Plant growth, nodulation and SNF were genotype and P level-dependent. 147 was more affected by P shortage (15 μmol P) than 115. Four ACP types were revealed in the nodules of both lines, ACP1 exhibiting a higher specific activity under P shortage as compared to the 60 μmol P treatment, especially in 115. A single phytase was revealed for the nodules of both lines and was significantly enhanced by P deficiency. Three ACP types were found in roots and leaves, showing increasing activity under P deficiency, especially in 115. Regardless of P supply, leaf ACP specific activity was higher than that of nodules and roots in the both lines. Interestingly, phosphorus use efficiency for N2 fixation significantly correlated to nodule ACP activity under P shortage in the both lines. The relatively better performance of 115 as compared to 147 under P deficiency could be partly ascribed to the ability of 115 to maintain higher ACP activity. This enzyme might be involved in the remobilization of the plant Pi and its utilization for SNF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Andriotis, V.M.E and Ross, J.D. 2003. Isolation and characterisation of phytase from dormantCorylus avellana seeds.Phytochemistry 64: 689–699.

    Article  CAS  PubMed  Google Scholar 

  • Araújo, A.P., Plassard, C., and Drevon, J.J. 2008. Phosphatase and phytase activities in nodules of common bean genotypes at different levels of phosphorus supply.Plant and Soil DOI 10.1007/s11104--008-9595-3.

  • Broughton, W.J., Hernández, G., Blair, M., Beebe, S., Gepts, P., and Vanderleyden, J. 2003. Beans (Phaseolus spp.) — model food legume.Plant and Soil 252: 55–128.

    Article  CAS  Google Scholar 

  • Chen, W.S., Huang, Y.F., and Chen, Y.R. 1992. Localization of acid phosphatase in root cap of rice plant.Botany Bulletin Academy Sin 33: 233–239.

    CAS  Google Scholar 

  • Coello, P. 2002. Purification and characterization of secreted acid phosphatase in phosphorus-deficientArabidopsis thaliana.Physiologia Plantarum 116: 293–298.

    Article  CAS  Google Scholar 

  • Doremus, H.D. and Blevins, D.G. 1988. Nucleoside diphosphatase and 5′-nucleotidase activities of soybean root nodules and other tissues.Plant Physiology 87: 36–40.

    Article  CAS  PubMed  Google Scholar 

  • Duff, S.M.G., Sarath, G., and Plaxton, W.C. 1994. The role of acid phosphatases in plant phosphorus metabolism.Physiologia Plantarum 90: 791–800.

    Article  CAS  Google Scholar 

  • Fernandez, D.S. and Ascencio, J. 1994. Acid phosphatase activity in bean and cowpea plants grown under phosphorus stress.Journal of Plant Nutrition 17: 229–241.

    Article  CAS  Google Scholar 

  • George, T.S., Richardson, A.E., Hadobas, P., and Simpson, R.J. 2004. Characterisation of transgenicTrifolium subterraneum L. which expresses phyA and releases extracellular phytase: growth and P nutrition in laboratory media and soil.Plant Cell Environment 27: 1351–1361.

    Article  CAS  Google Scholar 

  • Goldstein, A.H. 1992. Phosphate starvation inducible enzymes and proteins in higher plants. In: Society for Experimental Biology Seminar Series 49:Inducible Plant Proteins. Wray, J.L., ed. Cambridge University Press, Cambrige, UK. pp. 25–44.

    Google Scholar 

  • Graham, P.H., Rosas, J.C., Estevez de Jensen, C., Peralta, E., Tlusty, B., Acosta-Gallegos, J., and Arraes Pereira, P.A. 2003. Addressing edaphic constraints to bean production: the bean/cowpea CRSP project in perspective.Field Crop Research 82: 179–192.

    Article  Google Scholar 

  • Guranowski, A. 1982. Purine catabolism in plants.Plant Physiology 70: 344–349.

    Article  CAS  PubMed  Google Scholar 

  • Gustafsson, E. and Sandberg A.S. 1995. Phytate reduction in brown beans (Phaseolus vulgaris L).Journal of Food Science 60: 149–152.

    Article  CAS  Google Scholar 

  • Hardarson, G., Bliss, F.A., Cigales-Rivero, M.R., Henson, R.A., Kipe-Nolt, J.A., Longeri, L., Manrique, A., Pena-Cabrieles, J.J., Pereira, P.A.A., Sanabria, C.A., and Tsai, S.M. 1993. Genotypic variation in biological nitrogen fixation by common bean.Plant and Soil 152: 59–70.

    Article  Google Scholar 

  • Haran, S., Logendra, S., Seskar, M., Bratanova, M., and Raskin, I. 2000. Characterization ofArabidopsis acid phosphatase promoter and regulation of acid phosphatase expression.Plant Physiology 124: 615–626.

    Article  CAS  PubMed  Google Scholar 

  • Hayes, J.E., Richardson, A.E., and Simpson, R.J. 1999. Phytase and acid phosphatase activities in extracts from roots of temperate pasture grass and legume seedlings.Australian Journal of Plant Physiology 26: 801–809.

    Article  CAS  Google Scholar 

  • Hernández, G., Ramírez, M., Valdés-López, 0., Tesfaye, M., Graham, M.A., Czechowski, T., Schlereth, A., Wandrey, M., Erban, A., Cheung, F., Wu, H.C., Lara, M., Town, C.D., Kopka, J., Udvardi, M.K., and Vance, C.P. 2007. Phosphorus stress in common bean: Root transcript and metabolic responses.Plant Physiology 144: 752–767.

    Article  PubMed  Google Scholar 

  • Hinsinger, P. 2001. Bioavailability of soil inorganic phosphorus in the rhizosphere as affected by root-induced chemical changes — a review.Plant and Soil 13: 173–195.

    Article  Google Scholar 

  • Ingestad, T. 1981. Nutrition and growth of birch and grey alder seedlings in low conductivity solutions and at varied relative rates of nutrient addition.Physiologia Plantarum 52: 454–466.

    Article  CAS  Google Scholar 

  • Lee, D.H. 1998. Phosphorus use efficiency in anthocyanin-free tomato (Lycopersicon esculentum Mill.).Journal of Plant Biology 41: 86–92.

    Article  Google Scholar 

  • Li, S.M., Li, L., Zhang, F.S., and Tang, C. 2004. Acid phosphatase role in chickpea/maize intercropping.Annals of Botany 94: 297–303.

    Article  CAS  PubMed  Google Scholar 

  • Loewus, R.A., Everard, J.D., and Young, K.A. 1990. Inositol metabolism: Precursor role and breakdown. In:Inositol Metabolism in Plants. Morre, D.J., Boss, W.F., and Loewus, F.A., eds. Wiley-Liss, New York. pp. 21–45.

    Google Scholar 

  • Lynch, J. 1995. Root architecture and plant productivity.Plant Physiology 109: 7–13.

    CAS  PubMed  Google Scholar 

  • McLachlan, K.D., Elliott, D.E., De Marco, D.G., and Garran, J.H. 1987. Leaf acid phosphatase isozymes in the diagnosis of phosphorus status in field-grown wheat.Australian Journal of Agriculture Research 38: 1–13.

    Article  CAS  Google Scholar 

  • Mikulska, M., Bomsel, J.L., and Rychter, A.M. 1998. The influence of phosphate deficiency on photosynthesis, respiration and adenine nucleotide pool in bean leaves.Photosynthetica 35: 79–88.

    Article  CAS  Google Scholar 

  • Mudge, S.R., Smith, F.W., and Richardson, A.E. 2003. Root specific and phosphate regulated expression of phytase under the control of a phosphate transporter promoter enablesArabidopsis to grow on phytate as a sole P source.Plant Science 165: 871–878.

    Article  CAS  Google Scholar 

  • Penheiter, A.R., Duff, S.M.G., and Sarath, G. 1997. Soybean root nodule acid phosphatase.Plant Physiology 114: 597–604.

    Article  CAS  PubMed  Google Scholar 

  • Plaxton, W.C. and Carswell, M.C. 1999. Metabolic aspects of the phosphate starvation response in plants. In:Plant Responses to Environmental Stresses: From Phytohormones to Genome Reorganization. Lerner, H.R., ed, Marcel Dekker, New York, pp. 349–372.

    Google Scholar 

  • Ribet, J. and Drevon, J.J. 1995. Increase in permeability to oxygen and in oxygen uptake of soybean nodules under limiting phosphorus nutrition.Physiologia Plantarum 94: 298–304.

    Article  CAS  Google Scholar 

  • Richardson, A.E., George, T.S., Hens, M., and Simpson, R.J. 2004. Utilisation of soil organic phosphorus by higher plants. In:Organic Phosphorus in the Environment. Turner, B.L., Frossard, E., and Baldwin, D., eds. CABI Publishing, Wallingford. pp. 165–184.

    Google Scholar 

  • Roux, M.R., Ward, C.L., Botha, F.C., and Valentine A.J. 2006. Routes of pyruvate synthesis in phosphorus-deficient lupin roots and nodules.New Phytologist 169: 399–408.

    Article  PubMed  Google Scholar 

  • Rychter, A.M. and Randall, D.D. 1994. The effect of phosphate deficiency on carbohydrate metabolism in bean roots.Physiologia Plantarum 91: 383–388.

    Article  CAS  Google Scholar 

  • Sandberg, A.-S. 2002. Bioavailability of minerals in legumes.British Journal of Nutrition 88: 281–285.

    Article  Google Scholar 

  • Schachtman, D.P., Reid, R.J., and Ayling, S.M. 1998. Phosphorus uptake by plant: from soil to cell.Plant Physiology 116: 447–453.

    Article  CAS  PubMed  Google Scholar 

  • Schubert, K.R. 1981. Enzymes of purine biosynthesis and catabolism inGlycine max.Plant Physiology 68: 1115–1122.

    Article  CAS  PubMed  Google Scholar 

  • Scott, J.J. 1991. Alkaline phytase activity in nonionic detergent extracts of legume seeds.Plant Physiology 95: 1298–1301.

    Article  CAS  PubMed  Google Scholar 

  • Shang, C., Stewart, J.W.B., and Huang, P.M. 1992. pH effect on kinetics of adsorption of organic and inorganic phosphates by short-range ordered aluminium and iron precipitates.Geoderma 53: 1–14.

    Article  CAS  Google Scholar 

  • Sprent, J.I. 1988.The Ecology of the Nitrogen Cycle. Cambridge University Press, Cambridge.

    Google Scholar 

  • Steiner, T., Mosenthin, R., Zimmermann, B., Greiner, R., and Roth, S. 2007. Distribution of phytase activity, total phosphorus and phytate phosphorus in legume seeds, cereals and cereal by-products as influenced by harvest year and cultivar.Animal Feed of Science Technology 133: 320–334.

    Article  CAS  Google Scholar 

  • Tarafdar, J.C. and Claasen, N. 1988. Organic phosphorus compounds as a phosphorus source for higher plants through the activity of phosphatases produced by plant roots and microorganisms.Biology of Fertile Soils 5: 3308–3312.

    Google Scholar 

  • Turner, B.L., Mahieu, N., and Condron, L.M. 2003. Quantification of myoinositol hexaphosphate in alkaline soil extracts by solution 31P-NMR spectroscopy and spectral deconvolution.Soil Science 168: 469–478.

    Article  CAS  Google Scholar 

  • Vadez, V., Rodier, F., Payre, H., and Drevon, J.J. 1996. Nodule permeability to O2 and nitrogenase-linked respiration in bean genotypes varying in the tolerance of N2 fixation to P deficiency.Plant Physiology and Biochemistry 34: 871–878.

    CAS  Google Scholar 

  • Vadez, V., Lasso, J.H., Beck, D.P., and Drevon, J.J. 1999. Variability of N2-fixation in common bean (Phaseolus vulgaris L.) under P deficiency is related to P use efficiency.Euphytica 106: 231–242.

    Article  Google Scholar 

  • Wasaki, J., Omura, M., Osaki, M., Ito, H., Matsui, H., Shinano, T., and Tadano, T. 1999. Structure of a cDNA for an acid phosphatase from phosphate-deficient lupin (Lupinus albus L.) roots.Journal of Plant Nutrition and Soil Science 45: 439–449.

    CAS  Google Scholar 

  • Wasaki, J., Yamamura, T., Shinano, T., and Osaki, M. 2003. Secreted acid phosphatase is expressed in cluster roots of lupin in response to phosphorus deficiency.Plant and Soil 248: 129–136.

    Article  CAS  Google Scholar 

  • Werner, D. 2005. Production and biological nitrogen fixation of tropical legumes. In:Nitrogen Fixation in Agriculture, Forestry, Ecology and the Environment. Springer, Dordrecht. pp. 1–13.

    Chapter  Google Scholar 

  • Xiao, K., Katagi, H., Harrison, M., and Wang, Z.Y. 2006. Improved phosphorus acquisition and biomass production in Arabidopsis by transgenic expression of a purple acid phosphatase gene fromM. truncatula.Plant Science 170: 191–202.

    Article  CAS  Google Scholar 

  • Yadav, R.S. and Tarafdar, J.C. 2003. Phytase and phosphatase producing fungi in arid and semi-arid soils and their efficiency in hydrolyzing different organic P compounds.Soil Biology and Biochemistry 35: 1–7.

    Article  Google Scholar 

  • Yan, X., Liao, H., Trull, M.C., Beebe, S.E., and Lynch, J.P. 2001. Induction of a major leaf acid phosphatase does not confer adaptation to low phosphorus availability in common bean.Plant Physiology 125: 1901–1911.

    Article  CAS  PubMed  Google Scholar 

  • Yun, S.J. and Kaeppler, S.M. 2002. Induction of maize acid phosphatase activities under phosphorus starvation.Plant and Soil 237: 109–115.

    Article  Google Scholar 

  • Zimmermann, P., Zardi, G., Lehmann, M., Zeder, C., Amrhein, N., Frossard, E., and Bucher, M. 2003. Engineering the root-soil interface via targeted expression of a synthetic phytase gene in trichoblasts.Plant Biotechnology Journal 1: 353–360.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chedly Abdelly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kouas, S., Louche, J., Debez, A. et al. Effect of phosphorus deficiency on acid phosphatase and phytase activities in common bean (Phaseolus vulgaris L.) under symbiotic nitrogen fixation. Symbiosis 47, 141–149 (2009). https://doi.org/10.1007/BF03179974

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03179974

Keywords

Navigation