Skip to main content
Log in

Multiple antibiotic resistances of enteric bacteria isolated from recreational coastal waters and oysters of the Caribbean Sea

  • Ecological and Environmental Microbiology
  • Original Articles
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

This study investigated the antibiotic resistance of enteric bacteria and their association with environmental factors in a coastal area of the Caribbean Sea. Seawater and oyster samples were collected during rainy and dry seasons. Faecal indicators of seawater fulfilled international standards, except for enterococci during dry season, while in oysters were above 800 MPN/g tissue. Different cultural methods were used to isolate enteric bacteria, further identified by biochemical tests for species of the generaEscherichia, Providencia, Kluyvera, Citrobacter, Morganella, Klebsiella andEnterococcus. A total of 21 isolates presented multiple antibiotic resistances at least to five antibiotics, with higher resistance forEnterococcus durans against 20 antibiotics tested (20/20), followed byEscherichia coli (9/20). Enteric bacteria isolated from any sample source during the rainy season presented the highest antimicrobial resistance to penicillins and cephalosporins. This is the first report of multiple antibiotic resistances in enteric environmental isolates at the Caribbean Sea. This coastal environment might serve as a reservoir of antibiotic resistant bacteria and might represent public health risks associated with the use of recreational waters and the consumption of raw seafood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • APHA — American Public Health Association (1995). Standard Methods for the Examination of Water and Waste Water, 19th edn., APHA, Washington, DC.

    Google Scholar 

  • Arvanitidou M., Katsouyannopoulos V., Tsakris A. (2001). Antibiotic resistance patterns of enterococci isolated from coastal bathing waters. J. Med. Microbiol., 50: 1001–1005.

    CAS  PubMed  Google Scholar 

  • Bauer A.W., Kirby W.M.M., Sherris J.C., Turck M. (1966). Antibiotic susceptibility testing by a standardized single disc method. Amer. J. Clin. Pathol., 45: 493–496.

    CAS  Google Scholar 

  • Bustamante W., Alpízar A., Hernández S., Pacheco A., Vargas N., Herrera M.L., Vargas A., Caballero M., García F. (2003). Predominance ofvanA genotype among vancomycin-resistantEnterococcus isolates from poultry and swine in Costa Rica. Appl. Environ. Microbiol., 69: 7414–7419.

    Article  CAS  PubMed  Google Scholar 

  • Biyela P.T., Lin J., Bezuidenhout C.C. (2004). The role of aquatic ecosystems as reservoirs of antibiotic resistant bacteria and antibiotic resistance genes. Water Sci. Technol., 50: 45–50.

    CAS  PubMed  Google Scholar 

  • Cardonha A.M.S., Vieira R.H., Rodrigues D.P., Macrae A., Peirano G., Teophilo G.N. (2004). Faecal pollution in water from storm sewers and adjacent seashores in Natal, Rio Grande do Norte, Brazil. Int. Microbiol., 7: 213–218.

    PubMed  Google Scholar 

  • Constanzo S.D., Murby J., Bates J. (2005). Ecosystem response to antibiotics entering in the aquatic environment. Mar. Pollut. Bull., 51: 218–223.

    Article  Google Scholar 

  • Dang H.Y., Song L., Chen M., Chang Y. (2006a). Concurrence ofcat andtet genes in multiple antibiotic-resistant bacteria isolated from a sea cucumber and sea urchin mariculture farm in China. Microb. Ecol., 52: 634–643.

    Article  CAS  PubMed  Google Scholar 

  • Dang H.Y., Zhang X.X., Song L.S., Chang Y.Q., Yang G.P. (2006b). Molecular characterizations of oxytetracycline resistant bacteria and their resistance genes in mariculture waters of China. Mar. Pollut. Bull., 52: 1494–1503.

    Article  CAS  PubMed  Google Scholar 

  • Dang H.Y., Zhang X.X., Song L.S., Chang Y.Q., Yang G.P. (2007). Molecular determination of oxytetracycline-resistant bacteria and their resistance genes from mariculture environments of China. J. Appl. Microbiol., 103: 2580–2592.

    Article  CAS  PubMed  Google Scholar 

  • Dang H.Y., Ren J., Song L., Sun S., An L. (2008a). Diverse tetracycline resistant bacteria and resistance genes from coastal waters of Jiaozhou Bay. Microb. Ecol., 55: 237–246.

    Article  CAS  PubMed  Google Scholar 

  • Dang H.Y., Ren J., Song L., Sun S., An L. (2008b). Dominant chloramphenicol-resistant bacteria and resistance genes in coastal waters of Jiaozhou Bay, China. World J. Microbiol. Biotechnol., 24: 209–217.

    Article  CAS  Google Scholar 

  • De Oliveira A.J., Pinhata J.M. (2008). Antimicrobial resistance and species composition ofEnterococcus spp. isolated from waters and sands of marine recreational beaches in Southeastern Brazil. Water Res., 42: 2242–2250.

    Article  PubMed  Google Scholar 

  • Devriese L.A., Collins M.D., Wirth R. (1992). The genusEnterococcus. In: Balows A., Trüper H.G., Dworkin M., Harder W., Schleifer K., Eds, The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications. Springer-Verlag, New York, USA, pp. 1465–1481.

    Google Scholar 

  • Fernández-Delgado M., Contreras M., García-Amado M.A., Gueneau P., Suárez P. (2007). Occurrence ofProteus mirabilis associated with two species of Venezuelan oysters. Rev. Inst. Med. trop. S. Paulo, 49: 355–359.

    Article  PubMed  Google Scholar 

  • Fernández-Delgado M., García-Amado M.A., Contreras M., Edgcomb V., J., Gueneau P., Suárez P. (2009).Vibrio cholerae non-O1, non-O139 associated with seawater and plankton from coastal marine areas of the Caribbean Sea. Int. J. Env. Health Res., 19: 279–289.

    Article  Google Scholar 

  • Goñi-Urriza M., Capdepuy M., Arpin C., Raymond N., Caumette P., Quentin C. (2000). Impact of an urban effluent on antibiotic resistance of riverine Enterobactericeae andAeromonas spp. Appl. Environ. Microbiol., 66: 125–132.

    Article  PubMed  Google Scholar 

  • Herwig R.P., Gray J.P., Weston D.P. (1997). Antibacterial resistant bacteria in superficial sediments near salmon net-cage farms in Puget Sound, Washington. Aquaculture, 149: 263–283.

    Article  CAS  Google Scholar 

  • Kühn S., Iversen A., Burman L.G., Olsson-Liljequist B., Franklin A., Finn M., Aarestrup F., Seyfarth A., Blanch A.R., Taylor H., Caplin J., Moreno M.A., Dominguez L., Möllby R. (2000). Epidemiology and ecology of enterococci, with special reference to antibiotic resistant strains, in animals, humans and the environment. Int. J. Antimicrob. Agents, 14: 337–342.

    Article  PubMed  Google Scholar 

  • Kumar H.S., Parvathi A., Karunasagar I., Karunasagar I. (2005). Prevalence and antibiotic resistance ofEscherichia coli in tropical seafood. World J. Microbiol. Biotechnol., 21: 619–623.

    Article  CAS  Google Scholar 

  • Kummerer K. (2004). Resistance in the environment. J. Antimicrob. Chemother., 54: 311–320.

    Article  CAS  PubMed  Google Scholar 

  • Lima-Bittencourt C.I., Cursino L., Gonçalves-Dornelas H., Pontes D.S., Nardi R.M.D., Callisto M., Chartone-Souza E., Nascimiento A.M.A. (2007). Multiple antimicrobial resistance in Enterobacteriaceae isolates from pristine freshwater. Genet. Mol. Res., 6: 510–521.

    CAS  PubMed  Google Scholar 

  • Lukášová J., Šustácková A. (2003). Enterococci and Antibiotic Resistance. Acta Vet. Brno., 72: 315–323.

    Google Scholar 

  • OPS — Organización Panamericana de la Salud (2004). Legislación sobre antibióticos en América Latina. Available at: http://www.paho.org/spanish/ad/dpc/cd/amr-legis.pdf. Accessed July 24, 2008.

  • Reinthaler F.F., Posh J., Feieri G., Wust G., Haas D., Ruckenbauer G., Mascher F., Marth E. (2003). Antibiotic resistance ofE. coli in sewage and sluge. Water Res., 37: 1685–1690.

    Article  CAS  PubMed  Google Scholar 

  • Rice E.W., Messer J.W., Johnson C.H., Reasoner D.J. (1995). Occurrence of high-level aminoglycoside resistance in environmental isolates of enterococci. Appl. Environ. Microbiol., 61: 374–376.

    CAS  PubMed  Google Scholar 

  • Salyers A.A., Gupta A., Wang Y. (2004). Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol., 12: 412–416.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz T., Kohnen W., Janses B., Obst U. (2003). Detection of antibiotic-resistant bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms. FEMS Microbiol. Ecol., 43: 325–335.

    Article  CAS  PubMed  Google Scholar 

  • Van T.T.H., Chin J., Chapman T., Tran L.T., Coloe P.J. (2008). Safety of raw meat and shellfish in Vietnam: An analysis ofEscherichia coli isolations for antibiotic resistance and virulence genes. Int. J. Food Microbiol., 124: 217–223.

    Article  CAS  PubMed  Google Scholar 

  • Wang C., Dang H., Ding Y. (2008). Incidence of diverse integrons and β-lactamase genes in environmentalEnterobacteriaceae isolates from Jiaozhou Bay, China. World J. Microbiol. Biotechnol., 24: 2889–2896.

    Article  CAS  Google Scholar 

  • Watkinson A.J. (2007). Antibiotic-resistanceEscherichia coli in wastewaters, surface waters, and oysters from an urban riverine system. Appl. Environ. Microbiol., 73: 5667–5670.

    Article  CAS  PubMed  Google Scholar 

  • Young H.K. (1993).Antimicrobial resistance spread in aquatic environments. J. Antimicrob. Chemother., 31: 627–635.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Suárez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández-Delgado, M., Suárez, P. Multiple antibiotic resistances of enteric bacteria isolated from recreational coastal waters and oysters of the Caribbean Sea. Ann. Microbiol. 59, 409–414 (2009). https://doi.org/10.1007/BF03175123

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03175123

Key words

Navigation