Skip to main content
  • Industrial Microbiology
  • Original Articles
  • Published:

Cellulose degradation and glucose accumulation byClostridium thermocellum ATCC 27405 under different cultural conditions

Abstract

Effect of various cultural parameters on cellulose degradation, glucose accumulation and ethanol production byClostridium thermocellum ATCC 27405 were investigated. Optimum pH values for glucose accumulation and ethanol production were determined as 7 and 10, respectively. Highest amount of ethanol (0.92 g/l) was obtained from the culture which contains 10 g urea/l with 34.5% decrease in glucose accumulation. Addition of 100 mM phosphate to the medium increased ethanol production while cellulose degradation and sugar accumulation decreased by 34 and 99%, respectively. Among minerals tested, Mg+2 was found to be the most important element which affects cellulose degradation. When the medium contained no Mg+2, residual cellulose concentration was 4.3 g cellulose/l. When the cultural parameters were optimised, glucose accumulation started at early days of fermentation and glucose concentration was 60% higher than that of the control at the 10th day of fermentation.

References

  • Bahl H., Gottschalk G. (1984). Parameters affecting solvent production byClostridium acetobutylicum in continuous culture. Biotechnol. Bioeng. Symp., 14: 215–223.

    CAS  Google Scholar 

  • Bender J., Vatcharapijarn Y., Jeffries T.W. (1985). Characteristics and adaptability of some new isolates ofClostridium thermocellum. Appl. Environ. Microbiol., 49: 475–477.

    PubMed  CAS  Google Scholar 

  • Bhushan B., Halasz A., Hawari J. (2006). Effect of iron(III), humic acids and anthraquinone-2,6-disulfonate on biodegradation of cyclic nitramines byClostridium sp. EDB2. J. Appl. Microbiol., 100 (3): 555–563.

    Article  PubMed  CAS  Google Scholar 

  • Bothun G.D., Knutson B.L., Berberich J.A., Strobel H.J., Nokes S.E. (2004). Metabolic selectivity and growth ofClostridium thermocellum in continuous culture under elevated hydrostatic pressure. Appl. Microbiol. Biotechnol., 65: 149–157.

    Article  PubMed  CAS  Google Scholar 

  • Desvaux M., Guedon E., Petitdemange H. (2001). Metabolic flux in cellulose batch and cellulose-fed continuous cultures ofClostridium cellulolyticum in response to acidic environment. Microbiology, 147: 1461–1471.

    PubMed  CAS  Google Scholar 

  • Dubois M., Giles K.A., Hamilton J.K., Rebers P.A., Smith F. (1956). Colorimetric method of determination of sugars and related substances. Anal. Chem., 28: 350–356.

    Article  CAS  Google Scholar 

  • Freier D., Mothershed C.P., Wiegel J. (1984). Characterization ofClostridium thermmocellum JW20. Appl. Environ. Microbiol., 54: 204–211.

    Google Scholar 

  • Herrero A.A., Gomez R.F. (1980). Development of ethanol tolerance inClostridium thermocellum: Effect of growth temperature. Appl. Environ. Microbiol., 40: 571–577.

    PubMed  CAS  Google Scholar 

  • Johnson E.A. (1983). Regulation of Cellulase Activity and Synthesis inClostridium thermocellum. PhD. Thesis. Massachussetts Institute of Technology, Cambridge M.A.

    Google Scholar 

  • Johnson E.A., Sakajoph M., Halliwell G.G., Madia G., Demain A.L. (1982). Saccharification of complex cellulosic substrates by the cellulase system fromClostridium therrnocellum. Appl. Environ. Microbiol., 43: 1125–1132.

    PubMed  CAS  Google Scholar 

  • Kim D-S., Thomas S. and Fogler H.S. (2000). Effects of pH and trace minerals on long-term starvation ofLeuconostoc mesenteroides. Appl. Environ. Microbiol., 66: 976–981.

    Article  PubMed  CAS  Google Scholar 

  • Lamed R., Zeikus G. (1980). Ethanol production by thermophilic bacteria: relationship between fermentation product yields and catabolic enzyme activities inClostridium thermocellum andThermoanerobium brockii. J. Bacteriol., 144: 569–578.

    PubMed  CAS  Google Scholar 

  • Lamed R.J., Lobos J.H., Su T.M. (1988). Effects of stirring and hydrogen on fermentation products ofClostridium thermocellum. Appl. Environ. Microbiol., 54: 1216–1221.

    PubMed  CAS  Google Scholar 

  • Lynd L.R., Grethlein H.G. (1987). Hydrolysis of dilute acid pretreated hardwood and purified microcyrstalline cellulose by cell-free broth fromClostridium thermocellum. Biotechnol. Bioeng., 29: 92–100.

    Article  PubMed  CAS  Google Scholar 

  • Lynd L.R. (1989). Production of ethanol from lignocellulosic material using thermophilic bacteria: critical evaluation of potential and review. Adv. Biochem. Eng. Biotechnol., 38: 1–52.

    CAS  Google Scholar 

  • Lynd L.R., Weimer P.J., Van Zyl W.H., Pretorius I.S. (2002). Microbial cellulose utilization: Fundementals and biotechnology. Microbiol. Mol. Biol. Rev., 66: 506–577.

    Article  PubMed  CAS  Google Scholar 

  • Mori Y. (1990). Isolation of mutants ofClostridium thermocellum with enhanced cellulase production. Agric. Biol. Chem., 54: 825–826.

    CAS  Google Scholar 

  • Ng T.K., Zeikus J.G. (1982). Differential metabolism of cellobiose and glucose byClostridium thermocellum andClostridium thermohydrosulfiricum. J. Bacteriol., 150: 1391–1399.

    PubMed  CAS  Google Scholar 

  • Palmarola-Adrados B., Juhasz T., Galbe M., Zacchi G. (2004). Hydrolysis of nonstarch carbohydrates of wheat-starch effluent for ethanol eroduction. Biotechnol. Prog., 20: 474–479.

    Article  PubMed  CAS  Google Scholar 

  • Salapack G.E., Russell I., Stewart G.G. (1985). Thermophilic Bacteria and Thermotolerant Yeasts for Ethanol Production. NRCC No. 24410 Project Report. Division of Energy, NRC. Ottowa.

    Google Scholar 

  • Sai Ram M., Seenayya G. (1991). Production of ethanol from straw and bamboo pulp by primary isolates ofClostridium thermocellum. W.J. Microbiol. Biotechnol., 7: 372–378.

    Article  Google Scholar 

  • Sai Ram M., Swamy M.V., Seenayya G. (1991). Fermentation characteristics of ethanol producing isolates ofClostridium thermocellum. Ind. J. Microbiol., 31: 175–180.

    Google Scholar 

  • Sato K., Goto S., Yonemura S., Sekine K., Okuma E., Takagi Y., Hon-Nami K., Saiki T. (1992). Effect of yeast extract and vitamin B12 on ethanol production from cellulose byClostridium thermocellum I-I-B. Appl. Environ. Microbiol., 58: 734–736.

    PubMed  CAS  Google Scholar 

  • Sudha Rani K., Swamy M.V., Seenayya G. (1996). High ethanol production by new isolates ofClostridium thermocellum. Biotechnol. Lett., 18, 957–962.

    Article  Google Scholar 

  • Stevenson D.M., Weimer P.J. (2005). Expression of 17 genes inClostridium thermocellum ATCC 27405 during fermentation of cellulose or cellobiose in continuous culture. Appl. Environ. Microbiol., 71: (8): 4672–4678.

    Article  PubMed  CAS  Google Scholar 

  • Tsoi T.V., Chuvil’skaya A., Atakishieva Y.Y., Dzhavakhishvili T.D., Akimenko V.K., Boronin A.M. (1987).Clostridium thermocellum — a new object of genetic studies. Molekulyarnaya Genetika Mikrobiologiya i Virusologiya 11: 18–23.

    Google Scholar 

  • Tailliez P., Girard H., Longin R., Beguin P., Millet J. (1989). Cellulose fermentation by an asporogenous mutant and an ethanol tolerant mutant ofClostridium thermocellum. Appl. Environ. Microbiol., 55: 203–206.

    PubMed  CAS  Google Scholar 

  • Wang D.I.C., Avgerinos G.C., Biocic I., Wang S.D., Fang H.Y. (1983). Ethanol from cellulosic biomass. P. Roy. Soc. B-Biol. Sci., 300: 323–333.

    CAS  Google Scholar 

  • Warner J.B., Lolkema J.S. (2003). CcpA-dependent carbon catabolite repression in bacteria. Microbol. Mol. Biol. Rev., 67: 475–490.

    Article  CAS  Google Scholar 

  • Weimer P.J., Zeikus G. (1977). Fermentation of cellulose and cellobiose byClostridium thermocellum in the absence and presence ofMethanobacterium thermoautotrophicum. Appl. Environ. Microbiol., 33: 289–299.

    PubMed  CAS  Google Scholar 

  • Zhang Y-H. P., Lynd L.R. (2004). Kinetics and relative importance of phosphorolytic and hydrolytic cleavage of cellodextrins and cellobiose in cell extracts ofClostridium thermocellum. Appl. Environ. Microbiol., 70 (3): 1563–1569.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melek Özkan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Özpinar, Ö., Özkan, M. Cellulose degradation and glucose accumulation byClostridium thermocellum ATCC 27405 under different cultural conditions. Ann. Microbiol. 57, 395–400 (2007). https://doi.org/10.1007/BF03175079

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03175079

Key words