Skip to main content
Log in

Nitrogen atoms encased in cavities within the beryl structure as candidates for qubits

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Two new paramagnetic centers (N1 and N2) have been observed after γ-irradiation of a beryl single crystal. The observation of zero-field splitting from the electronic spin-state quartet and the isotropic hyperfine splitting with values similar to that of the free nitrogen atom enables us to suppose that the new paramagnetic centers are nitrogen atoms resulting from radiolysis of molecular nitrogen inside the structural channels of beryl. The following parameters of the spin Hamiltonian were determiend:g=2.0021±0.0003,A/h=13.7±0.1 MHz, andD/h=44.6±0.2 for N1 and 37.6±0.2 MHz for N2 with unique directions of zero-field splittingD along the optical axisc. An amazing resilience of the atomic properties of nitrogen trapped within the structural cavity has been experimentally observed. The N1 paramagnetic atom is stable up to 280°C. We suggest that the structural cavity in beryl could be a shelter for qubits encoded in electron spins of hydrogen or nitrogen atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buchachenko A.L.: J. Phys. Chem.105, 5839–5846 (2001)

    Google Scholar 

  2. Adrian F.J.: Phys. Rev.127, 837–843 (1962)

    Article  ADS  Google Scholar 

  3. Isoya J., Weil J.A., Davis P.H.: J. Phys. Chem. Solids44, 335–343 (1983)

    Article  ADS  Google Scholar 

  4. Murphy T.A., Pawlik Th., Weidinger A., Höhne M., Alcala R., Spaeth J.-M.: Phys. Rev. Lett.77, 1075–1078 (1996)

    Article  ADS  Google Scholar 

  5. Waiblinger M., Lips K., Harneit W., Weidinger A., Dietel E., Hirsch A.: Phys. Rev. B64, 159901(E) (2001)

    Article  ADS  Google Scholar 

  6. Dinse K.-P., Käß H., Knapp C., Weiden N.: Carbon38, 1635–1640 (2000)

    Article  Google Scholar 

  7. Harneit W.: Phys. Rev. A65, 032322 (2002)

    Article  ADS  Google Scholar 

  8. Meyer C., Harneit W., Naydenov B., Lips K., Weidinger A.: Appl. Magn. Reson.27, 123–132 (2004)

    Article  Google Scholar 

  9. Bennett C.H., DiVincenzo D.P.: Nature404, 247 (2000)

    Article  ADS  Google Scholar 

  10. Chuang I.L., Vandersypen L.M.K., Zhou X., Leung D.W., Lloyd S.: Nature393, 143–146 (1998)

    Article  ADS  Google Scholar 

  11. Jones J.A., Mosca M., Hansen R.H.: Nature393, 344–346 (1998)

    Article  ADS  Google Scholar 

  12. Lloyd S.: Science261, 1569–1571 (1993)

    Article  ADS  Google Scholar 

  13. Vandersypen L.M.K., Steffen M., Breyta G., Yannoni C.S., Sherwood M.H., Chuang I.L.: Nature414, 883–887 (2001)

    Article  ADS  Google Scholar 

  14. Warren W.S.: Science277, 1688–1689 (1997)

    Article  Google Scholar 

  15. Jones J.A., Prog. Nucl. Magn. Reson. Spectrosc.38, 325–360 (2001)

    Article  Google Scholar 

  16. Kane B.E.: Fortschr. Phys.48, 1023–1041 (2000)

    Article  Google Scholar 

  17. Suter D., Lim K.: Phys. Rev. A65, 052309 (2002)

    Article  ADS  Google Scholar 

  18. Twamley J.: Phys. Rev. A67, 052318 (2003)

    Article  ADS  Google Scholar 

  19. Morosin B.: Acta Crystallogr. B28, 1899–1903 (1972)

    Article  Google Scholar 

  20. Wood D.L., Nassau K.: J. Chem. Phys.47, 2220–2228 (1967)

    Article  ADS  Google Scholar 

  21. Damon P.E., Kulp J.L.: Am. Mineral.43, 433–459 (1958)

    Google Scholar 

  22. Wahler W.: Geochim. Cosmochim. Acta9, 105–135 (1956)

    Article  ADS  Google Scholar 

  23. Zimmermann J.L., Giuliani G., Cheilletz A., Arboleda C.: Int. Geol. Rev.39, 425–437 (1997)

    Article  Google Scholar 

  24. Bershov L.V.: Geochemistry7, 853–856 (1970)

    Google Scholar 

  25. Samoilovich M.I., Novozhilov A.I.: Zh. Neorg. Khim.15, 84–86 (1970)

    Google Scholar 

  26. Solntsev V.P.: Tr. Inst. Geol. Geofiz. Akad. Nauk SSSR Sib. Otd.499, 92–140 (1981)

    Google Scholar 

  27. Edgar A., Vance E.R.: Phys. Chem. Miner.1, 165–178 (1977)

    Article  ADS  Google Scholar 

  28. Mashkovtsev R.I., Solntsev V.P.: Phys. Chem. Miner.29, 65–71 (2002)

    Article  ADS  Google Scholar 

  29. Mashkovtsev R.I., Stoyanov E.S., Thomas V.G.: J. Struct. Chem.45, 56–63 (2004)

    Article  Google Scholar 

  30. Koryagin V.F., Grechushnikov B.N.: Sov. Phys. Solid State7, 2010–2013 (1965)

    Google Scholar 

  31. Sasamori R., Okaue Y., Isobe T., Matsuda Y.: Science265, 1691–1693 (1994)

    Article  ADS  Google Scholar 

  32. Weidinger A., Waiblinger M., Pietzak B., Murphy T.A.: Appl. Phys. A: Mater. Sci. Process A66, 287–292 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. I. Mashkovtsev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mashkovtsev, R.I., Thomas, V.G. Nitrogen atoms encased in cavities within the beryl structure as candidates for qubits. Appl. Magn. Reson. 28, 401–409 (2005). https://doi.org/10.1007/BF03166771

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03166771

Keywords

Navigation