Skip to main content
Log in

Brain ion homeostasis in cerebral ischemia

  • Original Articles
  • Published:
Neurochemical Pathology

Abstract

Brain function is severely disturbed in ischemia. Within seconds, consciousness and spontaneous activity is lost, whereas interstitial concentrations of major ions are kept near normal levels. After a few minutes, there is a dramatic increase of potassium and a lowering of sodium, chloride, and calcium concentrations. Similar ionic changes are observed during spreading depression, however, that is spontaneously reversible and may be elicited in the otherwise normally perfused brain.

In focal ischemia, the two events occur simultaneously. The central core of very low flow displays the ischemic increase of interstitial potassium concentration, whereas the surrounding tissue exhibits repeated episodes of spreading depression. This may induce energy failure by stimulating metabolism in areas with depressed flow thereby causing cell damage outside the ischemic core.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Astrup J. (1982) Energy-requiring cell functions in the ischemic brain.J. Neurosurg. 56, 482–497.

    Article  CAS  PubMed  Google Scholar 

  • Astrup J. and Norberg K. (1976) Potassium activity in cerebral cortex in rats during progressive severe hypoglycemia.Brain Res. 103, 418–423.

    Article  CAS  PubMed  Google Scholar 

  • Astrup J., Rehncrona S., and Siesjo B. K. (1980) The increase in extracellular potassium concentration in the ischemic brain in relation to the preischemic functional activity and cerebral metabolic rate.Brain Res. 199, 161–174.

    Article  CAS  PubMed  Google Scholar 

  • Astrup J., Symon L., Branston N. M., and Lassen N. A. (1977) Cortical evoked potential and extracellular K and H at critical levels of brain ischemia.Stroke 8, 51–57.

    CAS  PubMed  Google Scholar 

  • Benveniste H., Drejer J., Schousboe A., and Diemer N. H. (1984) Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis.J. Neurochem. 43, 1369–1374.

    Article  CAS  PubMed  Google Scholar 

  • Betz A. L., Firth J. A., and Goldstein G. W. (1980) Polarity of the blood-brain barrier: distribution of enzymes between the luminal and antiluminal membranes of brain capillary endothelial cells.Brain Res. 192, 17–28.

    Article  CAS  PubMed  Google Scholar 

  • Bradbury M. W. B. (1979)The Concept of a Blood-Brain Barrier, Wiley, Chichester, UK.

    Google Scholar 

  • Branston N. M., Strong A. J., and Symon L. (1977) Extracellular potassium activity, evoked potential and tissue blood flow. Relationships during progressive ischaemia in baboon cerebral cortex.J. Neurol. Sci. 32, 305–321.

    Article  CAS  PubMed  Google Scholar 

  • Bureś J., Buresova O., and Kŕivánek J. (1974)The Mechanisms and Applications of Leão’s Spreading Depression of Electroencephalographic Activity, Academic, New York, NY.

    Google Scholar 

  • Coles J. A. and Tsacopoulos M. (1979) Potassium activity in photoreceptors, glial cells and extracellular space in drone retina: changes during photostimulation.J. Physiol. (London)290, 525–549.

    CAS  Google Scholar 

  • Cserr H. F. (1971) Physiology of the choroid plexus.Physiol. Rev. 51, 273–311.

    CAS  PubMed  Google Scholar 

  • Dietzel I., Heinemann U., Hofmeier G., and Lux H. D. (1980) Transient changes in the size of the extracellular space in the sensimotor cortex of cats in relation to stimulus-induced changes in potassium concentration.Exp. Brain. Res. 40, 432–439.

    Article  CAS  PubMed  Google Scholar 

  • Dietzel I., Heineman U., Hofmeier G., and Lux H. D. (1982) Stimulus-induced changes in extracellular Na and Cl concentration in relation to changes in the size of the extracellular space.Exp. Brain Res. 46, 73–84.

    Article  CAS  PubMed  Google Scholar 

  • Glötzner F. (1967) Intracellulare Potentiale, EEG and korticale Gleichspannung an der sensimotorischen Rinde der Katze bei akuter Hypoxie.Arch. Psychiatr. Nervenkr. 210, 274–296.

    Article  PubMed  Google Scholar 

  • Gjedde A., Hansen A. J., and Quistorff B. (1981) Blood-brain glucose transfer in spreading depression.J. Neurochem. 37, 807–812.

    Article  CAS  PubMed  Google Scholar 

  • Hagberg H., Lehmann A., Sandberg M., Nystrom B., Jacobson I., and Hamberger A. (1985) Ischemia-induced shifts of inhibitory and excitatory amino acids from intra- to extracellular compartments.J. Cereb. Blood Flow Metab. 5, 413–419.

    CAS  PubMed  Google Scholar 

  • Hansen A. J. (1978) The extracellular potassium concentration in brain cortex following ischemia in hypo- and hyperglycemic rats.Acta Physiol. Scand. 102, 324–329.

    Article  CAS  PubMed  Google Scholar 

  • Hansen A. J. (1985) Effect of anoxia on ion distribution in the brain.Physiol. Rev. 65, 101–148.

    CAS  PubMed  Google Scholar 

  • Hansen A. J., Gjedde A., and Siemkowicz E. (1980) Extracellular potassium and blood flow in the post-ischemic rat brain.Pfluegers Arch. 389, 1–7.

    Article  CAS  Google Scholar 

  • Hansen A. J., Hounsgaard J., and Jahnsen H. (1982) Anoxia increases potassium conductance in hipppocampal nerve cells.Acta Physiol. Scand. 115, 301–310.

    Article  CAS  PubMed  Google Scholar 

  • Hansen A. J. and Lauritzen M. (1984) The role of spreading depression in acute brain disorders.Ann. Acad. brasil. Cienc. 56, 457–479.

    CAS  Google Scholar 

  • Hansen A. J., Lund-Andersen H., and Crone C. (1977) K permeability of the blood-brain barrier, investigated by aid of a K-sensitive microelectrode.Acta Physiol. Scand. 101, 438–445.

    Article  CAS  PubMed  Google Scholar 

  • Hansen A. J. and Olsen C. E. (1980) Brain extracellular space during spreading depression and ischemia.Acta Physiol. Scand. 108, 355–365.

    Article  CAS  PubMed  Google Scholar 

  • Hansen A. J. and Zeuthen T. (1981) Extracellular ion concentrations during spreading depression and ischemia in the rat brain cortex.Acta Physiol. Scand. 113, 437–445.

    Article  CAS  PubMed  Google Scholar 

  • Harris R. J., Symon L., Branston N. M., and Bayhan M. (1981) Changes in extracellular calcium activity in cerebral ischemia.J. Cereb. Blood Flow Metab. 1, 203–209.

    CAS  PubMed  Google Scholar 

  • Heinemann U. and Lux H. D. (1977) Ceiling of stimulus induced rises in extracellular potassium concentration in the cerebral cortex of cat.Brain Res. 120, 231–249.

    Article  CAS  PubMed  Google Scholar 

  • Hossmann K.-A., Sakaki S., and Zimmermann V. (1977) Cation activities in reversible ischemia of the cat brain.Stroke 8, 77–81.

    CAS  PubMed  Google Scholar 

  • Hounsgaard J. and Nicholson C. (1983) Potassium accumulation around individual Purkinje cells in cerebellar slices.J. Physiol. (London)340, 359–388.

    CAS  Google Scholar 

  • Kass I. S. and Lipton P. (1982) Mechanisms involved in irreversible anoxic damage to the in vitro hippocampal slice.J. Physiol. (London)332, 459–472.

    CAS  Google Scholar 

  • Kass I. S., and Lipton P. (1986) Calcium and long-term transmission damage following anoxia in dentate gyrus and CA1 regions of the rat hippocampal slice.J. Physiol. (London)378, 313–334.

    CAS  Google Scholar 

  • Kraig R. P. and Nicholson C. (1978) Extracellular ionic variations during spreading depression.Neuroscience 3, 1045–1059.

    Article  CAS  PubMed  Google Scholar 

  • Krnjević K. (1975) Coupling of neuronal metabolism and electrical activity,Brain Work (Ingvar D. H. and Lassen N. A., eds.), pp. 65–78, Munksgaard, Copenhagen (Alfred Benzon Symposium).

    Google Scholar 

  • Krnjević K. and Leblond J. (1987) Mechanism of hyperpolarizing response of hippocampal cells to anoxia.J. Physiol. (London)382, 79P.

    Google Scholar 

  • Krnjević, K., Morris M. E., and Reiffenstein R. J. (1980) Changes in extracellular Ca and K activity accompanying hippocampal discharges.Can. J. Physiol. Pharmacol. 58, 579–583.

    PubMed  Google Scholar 

  • Leão A. A. P. (1944) Spreading depression of activity in the cerebral cortex.J. Neurophysiol. 7, 359–390.

    Google Scholar 

  • MacVicar B. (1984) Voltage-dependent calcium channels in glial cells.Science 226, 1345–1347.

    Article  CAS  PubMed  Google Scholar 

  • Marshall W. H. (1959) Spreading cortical depression of Leao.Physiol. Rev. 39, 239–279.

    CAS  PubMed  Google Scholar 

  • Moghaddam B., Schenk J. O., Stewart W. B., and Hansen A. J. (1987) Temporal relationship between neurotransmitter release and ion flux during spreading depression and anoxia.Can. J. Physiol. Pharmacol. 65, 1105–1110.

    CAS  PubMed  Google Scholar 

  • Mori S., Miller W. H., and Tomita T. (1976) Microelectrode study of spreading depression (SD) in frog retina-Muller cell activity and [K+] during SD.Jpn. J. Physiol. 26, 219–233.

    CAS  PubMed  Google Scholar 

  • Mutch W. A. C. and Hansen A. J. (1984) Extracellular pH changes during spreading depression and cerebral ischemia: mechanisms of brain pH regulation.J. Cereb. Blood Flow Metab. 4, 17–27.

    CAS  PubMed  Google Scholar 

  • Nedergaard M. and Astrup J. (1986) Infarct rim: Effect of hyperglycemia on direct current potential and [14C]2-deoxyglucose phosphorylation.J. Cereb. Blood Flow Metab. 6, 607–615.

    CAS  PubMed  Google Scholar 

  • Nedergaard M. and Diemer N. H. (1985) Influence of hyperglycemia on ischemic brain damage after middle cerebral artery (MCA) occlusion in the rat.J. Cereb. Blood Flow Metab. 5, 231–232.

    Google Scholar 

  • Nedergaard M., Gjedde A., and Diemer N. H. (1986) Focal ischemia of the rat brain: autoradiographic determination of cerebral glucose utilization glucose content and blood flow.J. Cereb. Blood Flow Metab. 6, 414–424.

    CAS  PubMed  Google Scholar 

  • Nicholson C. and Kraig R. P. (1981) The behavior of extracellular ions during spreading depression,The Application of Ion-Selective Microelectrodes, (Zeuthen T., ed.), pp. 217–238, Elsevier, Amsterdam.

    Google Scholar 

  • Noma A. and Shibasaki T. (1985) Membrane current through adenosine-triphosphate-regulated potassium channels in guinea-pig ventricular cells.J. Physiol. (London)363, 463–480.

    CAS  Google Scholar 

  • Richter D. W., Camerer H., and Sonnhof U. (1978) Changes in extracellular potassium during the spontaneous activity of medullary respiratory neurons.Pfluegers Arch. 376, 139–149.

    Article  CAS  Google Scholar 

  • Rossen R., Kabat H., and Anderson J. P. (1943) Acute arrest of cerebral circulation in man.Arch. Neurol. Psychiatry 50, 510–528.

    Google Scholar 

  • Rothman S. M. and Olney J. W. (1986) Glutamate and the pathophysiology of hypoxic-ischemic brain damage.Ann. Neurol. 19, 105–111.

    Article  CAS  PubMed  Google Scholar 

  • Siemkowicz E. and Hansen A. J. (1981) Brain extracellular ion composition and EEG activity following 10 minutes ischemia in normo- and hyperglycemic rats.Stroke 12, 236–240.

    CAS  PubMed  Google Scholar 

  • Shinohara M., Dollinger B., Brown G., Rapoport S., and Sokoloff L. (1979) Cerebral glucose utilization: local changes during and after recovery from spreading cortical depression.Science 203, 188–190.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki R., Yamaguchi T., Li Choh-Luh, and Klatzo I. (1983) The effects of 5-minute ischemia in mongolian gerbils: II. Changes of spontaneous neuronal activity in cerebral cortex and CA1 sector of hippocampus.Acta Neuropathol. (Berlin)60, 217–222.

    Article  CAS  Google Scholar 

  • Strong A. J., Venables G. S., and Gibson G. (1983) The cortical ischemic penumbra associated with occlusion of the middle cerebral artery in, the cat. 1. Topography of changes in blood flow, potassium ion activity, and EEG.J. Cereb. Blood Flow Metab. 3 86–96.

    CAS  PubMed  Google Scholar 

  • Tamura A., Graham D. I., McCulloch J., and Teasdale G. M. (1981) Description of technique and early neuropathological consequences following middle cerebral artery occlusion.J. Cereb. Blood Flow Metab. 1, 53–60.

    CAS  PubMed  Google Scholar 

  • Wieloch T. (1985) Hypoglycemia-induced neuronal damage prevented by an N-methyl-d-aspartate antagonist.Science 230, 681–583.

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T. (1986) Cerebral extracellular potassium concentration change and cerebral impedance change in short-term ischemia in gerbil.Bull. Tokyo Med. Dent. Univ. 33, 1–8.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, A.J., Nedergaard, M. Brain ion homeostasis in cerebral ischemia. Neurochemical Pathology 9, 195–209 (1988). https://doi.org/10.1007/BF03160362

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03160362

Index Entries

Navigation