Skip to main content
Log in

Enzymatische Marker der Reperfusion bei akutem Myokardinfarkt

Cardiac markers for non-invasive prediction of coronary reperfusion in myocardial infarction — Including data from the I.S.A.M. study

mit Daten aus der I.S.A.M.-Studie

  • Published:
Herz Aims and scope Submit manuscript

Zusammenfassung

Beim akuten Myokardinfarkt kommt es durch Verschluß eines Koronargefäßes zur Minderdurchblutung des Myokards mit Zellnekrose. Durch rasche und effektive Thrombolyse (definiert als Wiedereröffnung des Infarktgefäßes mit normalem Fluß [TIMI-Grad 3]) können die Infarktgröße begrenzt und die Mortalität deutlich gesenkt werden. Dieses wird in Abhängigkeit vom verwendeten Thrombolytikum jedoch nur in 50 bis 80% der Patienten erreicht.

Verschiedene Herzmarker zeigen bei Reperfusion eine unterschiedliche Kinetik mit einem steilen Anstieg bis zu einem hohen Gipfel und einer schnelleren Normalisierung, so daß das Ergebnis der Lysetherapie nichtinvasiv abgeschätzt werden kann.

Myoglobin wird beim Infarkt frühzeitig freigesetzt (bereits zwei Studden nach dem Schmerzereignis Sensitivität von über 60%) und erreicht seinen Gipfel nach vier bis acht Stunden. Der steile Enzymanstieg bei Reperfusion (innerhalb der ersten zwei Stunden >-150 ng/ml/Stunde bzw. ein Verhältnis von Myoglobin 90 Minuten nach Lyse zu Myoglobin zu Lysebeginn > 4) mit einem Erreichen des Myoglobinmaximums innerhalb von fünf Stunden legt mit hoher Wahrscheinlichkeit (und höherem negativen prädiktiven Wert als bei allen anderen Markern) einen Lyseerfolg nahe. Dies belegen unter anderem die I.S.A.M.-Studie und Studien mit angiographisch nachgewiesenem TIMI-Grad-3-Fluß nach Thrombolyse. Für eine Reintervention (erneute Thrombolyse oder Rescue-PTCA) bleibt dann immer noch Zeit.

Troponin und Kreatinkinase (CK) steigen beim Myokardinfarkt frühestens nach drei bis vier Stunden an, so daß beide Marker bei frühem Lysebeginn noch negativ sein können. Dennoch erlauben Anstiegssteilheit oder ein früheres Erreichen des Enzymmaximums (bei der CK/CK-MB-Aktivität innerhalb von neun Stunden) den Rückschluß auf eine Reperfusion, wobei die Differenzierung zwischen TIMI-Grad-2-und-3-Fluß im klinischen Alltag schwierig ist.

Abstract

Despite advances in therapy acute myocardial infarction is associated with a mortality rate of up to 30%. Early and complete reperfusion of the infarct related artery (-defined as TIMI flow 3 at 90 minutes following therapy) as obtained with thrombolytic therapy in 50 to 80% of patients improves survival and enhances ventricular function. Failure to achieve recanalization should prompt further intervention (second attempt of thrombolysis or rescue-PTCA). Various cardiac markers known from diagnosing acute myocardial infarction or risk stratification in unstable angina pectoris have been assessed in their ability to predict successful reperfusion/failure of therapy. Following reperfusion creatin-kinase (CK) and its isoform CK-MB, troponin and myoglobin show an early and rapid rise to a high maximum value with rapid normalization. For creatinkinase time to peak values of less than 9 hours or rates of increase of > 50 U/h (>-10 U/h for CK-MB activity) within the first 2.5 hours following thrombolysis have been suggested as useful indicators of successful reperfusion. The same applies for a troponin (T)slope >0.5 ng/ml/h within the first hour (Table 5).

The major limitation in applying either creatinkinase, troponin or even lactatdehydrogenase (LDH) is their comparatively late release (4 to 6 hours) following myocardial infarction. In that respect myoglobin (though not specific for cardiac injury) seems ideal for guidance of intervention after failed thrombolysis.

The I.S.A.M. study included 1,741 patients with acute myocardial infarction of less than 6 hours duration being given either streptokinase or placebo. Serial blood samples for measurement of cardiac enzymes were drawn within the first 50 hours. In the streptokinase group the time to peak concentration of CK-MB activity was significantly lower (mean 10.9 hours vs 16.1 hours following initiation of treatment) as was the area under the CK-MB curve indicating reduction of infarct size (Table 2).

A substudy investigating the myoglobin release in 120 patients having received streptokinase or placebo demonstrated higher maximum values in the streptokinase group (mean 3008 vs 2097 ng/ml), a shorter time to peak interval following treatment (3.4 vs 6.5 hours) and a reduction in infarct size as suggested by a smaller area under the myoglobin curve (17,377 vs 23,240 ng/ml × h) (Table 3).

For LDH/α-HBDH the reduction in time to peak intervals was less impressive (Table 4). In angiographic studies with TIMI flow 3 at 90 minutes in the infarct related artery in 22 patients (Figure 5) the maximum myoglobin value was reached in less than 4,2 hours (mean value plus SEM) following treatment (9,5 hours for CK-MB activity). Therefore, myoglobin seems to be the preferred marker in reperfusion assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Abe S, Arima S, Yamashita T, et al. Early assessment of reperfusion therapy using cardiac troponin T. Am Coll Cardiol 1994; 23:1382–9.

    CAS  Google Scholar 

  2. Antmann EM, Braunwald E. Acute myocardial infarction. In: Braunwald E, ed. Heart disease. A textbook of cardiovascular medicine, 5th edn Philadelphia: Saunders, 1997:1184.

    Google Scholar 

  3. Apple FS, Henry TD, Berger CR, et al. Early monitoring of serum cardiac troponin I for assessment of coronary reperfusion following thrombolytic therapy. Am J Clin Pathol 1996;105:6–10.

    PubMed  CAS  Google Scholar 

  4. Danne O, Störk T, Möckel M, et al. Myoglobin beim akuten Myokardinfarkt. Reperfusionsdiagnostik nach Thrombolyse. Intensivmedizin 1995;32:138–46.

    Google Scholar 

  5. Ellis AK, Little T, Masud AR, et al. Patterns of myoglobin release after reperfusion of injured myocardium. Circulation 1985; 72:639–47.

    PubMed  CAS  Google Scholar 

  6. Fibrinolytic Therapy Trialists (FIT) Collaborative Group. Indications for fibrinolytic therapy in suspected acute myocardial infarction: Collaborative overview of early mortality and major morbidity results from all randomised trials of more than 1000 patients. Lancet 1994;343:311.

    Google Scholar 

  7. Frey N, Müller Bardorff M, et al. Wertigkeit von Laborparametern bei der Risikostratifizierung von Patienten mit koronarer Herzkrankheit und chronischer Myokardischämie. Z Kardiol 1998;87:Suppl 2:100–5.

    Article  PubMed  Google Scholar 

  8. Granger CB, Califf RM, Topol EJ. Thrombolytic therapy for acute myocardial infarction: A review. Drugs 1992;44:293.

    Article  PubMed  CAS  Google Scholar 

  9. Gruppo Italiano Per Lo Studio della Streptochinase Nell’ Infarct Miocardico (GISSI). Effectiveness of intravenous thrombolytic treatment in acute myocardial infarction. Lancet 1986;1:397.

    Google Scholar 

  10. Gulba DC, Tanswell P, Dechend R, et al. Sixty-minute alteplase protocol: a new accelerated recombinant tissue-type plasminogen activator regimen for thrombolysis in acute myocardial infarction. J Am Coll Cardiol 1997;30:1611–7.

    Article  PubMed  CAS  Google Scholar 

  11. GUSTO-I Angiographic Investigators. The effects of tissue plasminogen activator, streptokinase, or both on coronary artery patency, ventricular funktion and survival after acute myocardial infarction. N Engl J Med 1993;329:1615–22.

    Article  Google Scholar 

  12. Hamm CW. Die Troponine — neue Marker zum Nachweis einer Myokardzellschädigung. Fortschr Med 1996;32:47–50.

    Google Scholar 

  13. Hamm CW, Goldmann BU, Heeschen C, et al. Emergency room triage of patients with acute chest pain by means of rapid testing for cardiac troponin T or troponin I. N Engl J Med 1997; 337:1648–53.

    Article  PubMed  CAS  Google Scholar 

  14. Hamm CW, Heeschen C, Goldmann B, et al. Benefit of Abciximab in patients with refractory unstable angina in relation to serum troponin T levels. N Engl J Med 1999;340:1623–9.

    Article  PubMed  CAS  Google Scholar 

  15. Hogg KH, Hornung RS, Howie CA, et al. Electrocardiographic prediction of coronary artery patency after thrombolytic treatment in acute myocardial infarction: Use of the ST segment as a noninvasive marker. Br Heart J 1988;60:275–80.

    Article  PubMed  CAS  Google Scholar 

  16. Hohnloser SH, Zabel M, Kasper W, et al. Assessment of coronary artery patency after thrombolytic therapy: accurate prediction utilizing the combined analysis of three noninvasive markers. J Am Coll Cardiol 1991;18:44–9.

    PubMed  CAS  Google Scholar 

  17. Hornykewyez S, Gabriel H, Huber K. Biochemical markers of myocardial necrosis in acute myocardial infarction and thrombolysis. Ann Hematol 1994;69:Suppl II:59–63.

    Article  Google Scholar 

  18. The I.S.A.M.-Study Group. A prospective trial of intravenous streptokinase in acute myocardial infarction. N Eng J Med 1986;314:1465–71.

    Google Scholar 

  19. Jurlander B, Clemmensen P, Magnus Ohman E, et al. Serum myoglobin for the early non-invasive detection of coronary reperfusion in patients with acute myocardial infarction. Eur Heart J 1996;17:399–406.

    PubMed  CAS  Google Scholar 

  20. Kaiser H, Spaar U, Sold G, et al. Radioimmunologische Bestimmung von Human-Myoglobin in der Diagnostik des akuten Myokardinfarkts. Klin Wochenschr 1979;57:225–35.

    Article  PubMed  CAS  Google Scholar 

  21. Kircher BJ, Topol EJ, O’Neill WW, et al. Prediction of infarct coronary artery recanalization after intravenous thrombolytic therapy. Am J Cardiol 1987;59:513–5.

    Article  PubMed  CAS  Google Scholar 

  22. Krucoff MW, Green CE, Satler LF, et al. Noninvasive detection of coronary artery patency using continuous ST-segment monitoring. Am J Cardiol 1986;57:916–22.

    Article  PubMed  CAS  Google Scholar 

  23. Laperche T, Golmard JL, Steg G, for the PERM Study Group. Early behavior of biochemical markers in patients with Thrombolysis in Myocardial Infarction grade 2 flow in the infarct artery as opposed to other flow grades after intravenous thrombolysis for acute myocardial infarction. Am Heart J 1997;134:1044–51.

    Article  PubMed  CAS  Google Scholar 

  24. Lavin F, Kane M, Forde A, et al. Comparison of five cardiac markers in the detection of reperfusion after thrombolysis in acute myocardial infarction. Br Heart J 1995;73:422–7.

    Article  PubMed  CAS  Google Scholar 

  25. Lewis BS, Ganz W, Laramee P, et al. Usefulness of a rapid initial increase in plasma creatine kinase activity as a marker of reperfusion during thrombolytic therapy for acute myocardial infarction. Am J Cardiol 1988;62:20–4.

    Article  PubMed  CAS  Google Scholar 

  26. Lindahl B, Venge P, Wallentin L, for the Fragmin in unstable coronary artery disease (FRISC) Study Group. Troponin Tidentifies patients with unstable coronary artery disease who benefit from long-term antithrombotic protection. J Am Coll Cardiol 1997;29:43–8.

    Article  PubMed  CAS  Google Scholar 

  27. Mair J, Puschendorf B. Neue Laborparameter zur Diagnose und Überwachung akuter Myokardschäden. DG Klinische Chemie — Mitteilungen 1994;25:1–16.

    Google Scholar 

  28. Meierhenrich R, Sorges E, Götz J, et al. Thrombolytische Therapie bei Herzinfarkt, Lungenembolie und Venenthrombose. Intensivmedizin 1997;34:58–68.

    Article  Google Scholar 

  29. Neuhaus KL, Tebbe U, Sauer G, et al. High dose intravenous Streptokinase in acute myocardial infarction. Clin Cardiol 1983; 6:426–34.

    Article  PubMed  CAS  Google Scholar 

  30. Neubaus KL, Tebbe U, Gottwik M, et al. Intravenous recombinant tissue plasminogen activator (rt-PA) and urokinase in acute myocardial infarction: Results of the German Activator Urokinase Study (GAUS). J Am Coll Cardiol 1988;12:581–7.

    Google Scholar 

  31. Neuhaus KL, Feurer W, Jeep-Tebbe S, et al. Improved thrombolysis with a modified dose regimen of recombinant tissue-type plasminogen activator. J Am Coll Cardiol 1989;14:1566–9.

    Article  PubMed  CAS  Google Scholar 

  32. Prellwitz DW. Die klinische Bedeutung der Konzentrationsbestimmung der Troponine. Dtsch Med Wochenschr 1994;119: 1013–5.

    Article  PubMed  CAS  Google Scholar 

  33. Schröder R, Biamino G, von Leitner ER, et al. Intravenous short-term infusion of streptokinase in acute myocardial infarction. Circulation 1983;67:536–548.

    PubMed  Google Scholar 

  34. Stewart JT, French JK, Theroux P, et al. Early noninvasive identification of failed reperfusion after intravenous thrombolytic therapy in acute myocardial infarction. J Am Coll Cardiol 1998;31:1499–505.

    Article  PubMed  CAS  Google Scholar 

  35. Störk T, Möckel M, für die NOWIS Studiengruppe. Beitrag des Labors zur Diagnostik und Risikostratifikation bei akuten Koronarsyndromen in der klinischen Routine (NOWIS) Intensivmedizin 1998;35:42–9.

    Article  Google Scholar 

  36. Thomas L, Hrsg. Labor und Diagnose, 4. Aufl. Marburg: Medizinische Verlagsgesellschaft, 1995.

    Google Scholar 

  37. Vogt A, von Essen R, Tebbe U, et al. Impact of early perfusion status of the infarct-related artery on short-term mortality after thrombolysis for acute myocardial infarction: Retrospective analysis of four German multicenter studies. J Am Coll Cardiol 1993;21:1391.

    Article  PubMed  CAS  Google Scholar 

  38. Voth E, Tebbe U, Schicha H, et al. and the I.S.A.M Study Group. Intravenous Streptokinase in Acute Myocardial Infarction (I.S.A.M.) Trial: Serial evaluation of left ventricular function up to 3 years after infarction estimated by radionuclide ventriculography. J Am Coll Cardiol 1991;18:1610–6.

    PubMed  CAS  Google Scholar 

  39. Walter S, Carlsson J, Tebbe U. Troponin und Myoglobin — Stellenwert in der Diagnostik akuter koronarer Syndrome. Notfall & Rettungsmedizin 1999;2:263–6.

    Article  Google Scholar 

  40. White HD, Aylward PE, Frey MJ et al. Randomized, double-blind comparison of hirulog versus heparin in patients receiving streptokinase and aspirin for acute myocardial infarction (HERO). Hirulog early reperfusion/occlusion (HERO) trial investigators. Circulation 1997;96:2155–61.

    PubMed  CAS  Google Scholar 

  41. Winter RJ de, Koster RW, Sturk A, et al. Value of myoglobin, troponin T, and CK-MB mass in ruling out an acute myocardial infarction in the emergency room. Circulation 1995;92:3401–7.

    PubMed  Google Scholar 

  42. Wong CK, French JK, Aylward PE, et al. Usefulness of the presenting electrocardiogram in predicting successful reperfusion with streptokinase in acute myocardial infarction. Am J Cardiol 1999;83:164–8.

    Article  PubMed  CAS  Google Scholar 

  43. Woodfield SL, Lundergan CF, Reiner JS, et al. Gender and acute myocardial infarction: is there a different response to thrombolysis? J Am Coll Cardiol 1997;29:35–42.

    Article  PubMed  CAS  Google Scholar 

  44. Zabel M, Hohnloser SH, Köster W, et al. Analysis of creatine kinase, CK-MB, myoglobin, and troponin T time-activity curves for early assessment of coronary artery reperfusion after intravenous thrombolysis. Circulation 1993;87:1542–50.

    PubMed  CAS  Google Scholar 

  45. Zeymer U, Tebbe U, Essen RV, et al. Influence of time to treatment on early infarct-related artery patency after different thrombolytic regimens. ALKK-Study Group. Am Heart J 1999; 137:34–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walter, S., Carlsson, J., Schröder, R. et al. Enzymatische Marker der Reperfusion bei akutem Myokardinfarkt. Herz 24, 430–439 (1999). https://doi.org/10.1007/BF03044429

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03044429

Schlüsselwörter

Key Words

Navigation