Skip to main content
Log in

Molecular phylogeny of the genusHypericum (Hypericaceae) from Korea and Japan: evidence from nuclear rDNA ITS sequence data

  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

As part of our ongoing phylogenetic study of genusHypericum, nuclear ribosomal DNA internal transcribed spacer sequences were analyzed for 36 species ofHypericum as ingroup and two species ofThornea as outgroup. This sampling included most of the previously described species from both Korea and Japan. The ITS phylogeny suggested that the surveyedHypericum species belong to a monophyletic section,Trigynobrathys, and a polyphyletic section,Hypericum. In addition, two monotypic sections,Sampsonia andRoscyna, were identified. Members of sectionHypericum occur in four different lineages worldwide, which imply at least four independent origins. The Korean and Japanese species of sectionHypericum form a monophyletic group, except forH. vulcanicum. Instead, that particular species belongs to a distinct monophyletic group withH. scoreri andH. formosa from other geographic areas, and is a sister to sectionTrigynobrathys. The Korean and Japanese species of sectionTrigynobrathys show a monophyletic origin.H. sampsonii is now recognized as a distinct section rather than being a member of sectionsHypericum orDrosocarpium, as had been indicated previously. Our results differ somewhat from those of recent morphological and cytological studies. The phylogenetic relationships among Korean and Japanese species have now been mostly resolved via ITS phylogeny.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Doyle JJ, Doyle JL (1987) A rapid isolation procedure for small quantities of fresh leaf material. Phytochem Bull 19:11–15

    Google Scholar 

  • Farris JS (1989) The retention index and homoplasty excess. Syst Zool 38:406–407

    Article  Google Scholar 

  • Farris JS, Albert VA, Kallersjo M, Lipscomb D, Kluge AG (1996) Parsimony jackknifing outperforms neighbor-joining. Cladistics 12:99–124

    Article  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Hance HF (1865) Descriptions of four new plants from southern China. J Bot 3:378–381

    Google Scholar 

  • Hillis DM, Huelsenbeck JP (1992) Signal, noise and reliability in molecular phylogenetic analyses. J Heredity 83:189–195

    CAS  Google Scholar 

  • Jaubert C, Spach E (1842) Illustrationes Plantarum Orientalium I. Apud Roret Bibliopolam Paris

  • Kato T (1990) Taxonomical studies on theHypericum pseudopetiolatum complex. J Fac Sci Univ Tokyo (III) 14:341–413

    Google Scholar 

  • Keller R (1925)Hypericum.In A Engler, K Prantl, eds, Die Naturlichen Pflanzenfamilien, Ed 2. Leipzig, Berlin, pp 175–183

    Google Scholar 

  • Kim K-J, Jansen RK (1994) Comparisons of phylogenetic hypotheses among different data sets in dwarf dandelions (Krigia): Additional information from internal transcribed spacer sequences of nuclear ribosomal DNA. Plant Syst Evol 190:157–185

    Article  CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  PubMed  CAS  Google Scholar 

  • Kimura Y (1951) Hypericaceae.In T Nakai, M Honda, eds, Nova Flora Japonica, Vol 10. Natural Science Museum, Tokyo

    Google Scholar 

  • Kluge AG, Farris JS (1969) Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32

    Article  Google Scholar 

  • Kogi M (1984) A karyomorphological study of the genusHypericum (Hypericaceae) in Japan. Bot Mag Tokyo 97:333–343

    Article  Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: Molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245

    Article  PubMed  CAS  Google Scholar 

  • Lee TB (1979) Illustrated Flora of Korea. Hwangmunsa, Seoul

    Google Scholar 

  • Lee WT (1996a) Linneamenta Florae Koreae. Academy Publishing Company, Seoul

    Google Scholar 

  • Lee YN (1996b) Flora of Korea. Kyohaksa, Seoul Linneaus CV (1753) Species Plantarum. Tomus I. Holmiae, Stockholm

    Google Scholar 

  • Loockerman DJ, Jansen RK (1996) The use of herbarium material for DNA studies.In TF Stuessy, SH Sohmer, eds, Sampling the Green World. Columbia University Press, New York, pp 205–220

    Google Scholar 

  • Ohwi J (1975) Flora of Japan. Shibundo, Tokyo

    Google Scholar 

  • Ohwi J (1984) Flora of Japan. Smithsonian Institution Press, Washington DC

    Google Scholar 

  • Park MK (1974) Key to the Herbaceous Plants in Korea. Chungumsa, Seoul

    Google Scholar 

  • Park S-J, Kim K-J (2005) Two new species ofHypericum from Korea (Hypericaceae),H. chejuense andH. jeon-jocksanense. Novon 15 (In press)

  • Posada D, Crandall KA (1998) Modeltest: Testing the model of DNA substitution. Bioinformatics 14:817–818.

    Article  PubMed  CAS  Google Scholar 

  • Robson NKB (1977) Studies in the genusHypericum L. (Guttiferae) I. Infrageneric classification. Bull Br Mus Nat Hist (Bot) 5: 291–355

    Google Scholar 

  • Robson NKB (1990) Studies in the genus Hypericum L. (Guttiferae) 8. Sections 29. Brathys (Part 2) and 30. Trig-ynobrathys.Bull Br Mus Nat Hist (Bot) 20: 1–151

    Google Scholar 

  • Robson NKB (2001) Studies in the genus Hypericum L. (Guttiferae) 4(1). Sections 7. Roscyna to 9. Hypericum sensu lata (Part 1). Bull Br Mus Nat Hist (Bot) 31: 37–88

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis R (1989) Molecular Cloning, A Laboratory Manual, Ed 2. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Satake Y, Ohwi J, Kitamura S, Wataris S, Tominar T (1981) Wild Flowers of Japan. Heibonsha, Tokyo

    Google Scholar 

  • Spach E (1836) Hypericacearum monographiae fragments. Annals Sci Nat Ser 2, Bot 5: 157–176

    Google Scholar 

  • Swofford DL (2002) PAUP: Phylogenetic analysis using parsimony and other methods (ver. 4.0), Sinauer Associates, Sunderland, MA Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Hig-gins DC (1997) The ClustalX windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Google Scholar 

  • White TT, Bruns T, Lee S, Tayler J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M Innis, D Gelfand, J Sninsky, T White, eds, PCR Protocols: A Guide to Methods and Applications. Academic Press, California, pp 315–322

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki-Joong Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, SJ., Kim, KJ. Molecular phylogeny of the genusHypericum (Hypericaceae) from Korea and Japan: evidence from nuclear rDNA ITS sequence data. J. Plant Biol. 47, 366–374 (2004). https://doi.org/10.1007/BF03030553

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03030553

Keywords

Navigation