Skip to main content
Log in

Long-term effects of several biochemical and physical factors on cellulose biosynthesis in callus and suspension cultures of normal and mutant barley (Hordeum vulgare L.) strains producing less cellulose

  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

To clarify a low level of cellulose biosynthesis of thein vitro cultured cells, the effects of several biochemical factors such as carbon sources (sucrose, maltose, and UDPG), antioxidants (ascorbic acid and glutathione) and physical factors such as artificial pressure, high gravity, on the cellulose production in barley callus and suspension cultures were investigated. In the suspension culture of two barley strains, the supplement of different concentrations (0, 1.5, 3.0, and 4.5%) of sucrose or maltose into the medium for 30 days did not promote the cellulose production and 4.5% of sugar supplement was rather inhibitory in one strain. However, in the presence of sucrose at 3%, UDPG (3 or 10 mM) supplement, as a precursor for cellulose, promoted 1.2–13 fold of the production in two strains. A low concentration (3 mM) of ascorbic acid and glutathione promoted 1.5 and 1.2 fold of the production in two strains, respectively. These results suggest that low cellulose biosynthesis of thein vitro cultured cells is due to a decreased level of the UDPG in the cytosol, and that the oxidative condition of external medium impedes cellulose synthesis in some manners. Artificial pressure applied to the callus promoted 1.4 fold of the cellulose production. High gravity (5,000 or 10,000g) applied to the suspension-cultured cells by centrifugation did not cause a substantial change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Albersheim, P., A. Darvil, K. Roberts, A. Stachelin and J.E. Varner. 1997. Do the structure of cell wall polysaccharides define their mode of synthesis?Plant Physiol. 113: 1–3.

    Article  PubMed  CAS  Google Scholar 

  • Blakeney, A. B., P.J. Harris, R.J. Henry and B.A. Stone. 1983. A simple and rapid preparation of alditol for monosaccharide analysis.Carbohydr. Res. 113: 291–299.

    Article  CAS  Google Scholar 

  • Chambat, G., J.-P. Joseleau and F. Barnoud. 1981. The carbohydrate constituents of the cell wall of suspension-cultures ofRosa glauca.Phylochem. 20: 241–246.

    Article  CAS  Google Scholar 

  • Delmer, D.P. 1987. Cellulose biosynthesis.Anna. Rev. Plant Physiol. 38: 259–290.

    Article  CAS  Google Scholar 

  • Delmer, D.P., P. Ohana, L. Gonen and M. Benziman. 1993.In vitro synthesis of cellulose in plant: Still a long way to go!Plant Physiol. 103: 307–308.

    PubMed  CAS  Google Scholar 

  • Dubois, M., K.A. Gilles, J.K. Hamilton, P.A. Rebers and F. Smith. 1956. Colorimetric method for determination of sugars and related substances.Anal. Chem. 28: 350–356.

    Article  CAS  Google Scholar 

  • Fincher, G.B. and B.A. Stone. 1983. Arabinogalactan-protein; Structure, biosynthesis, and function.Anal. Rev. Plant Physiol. 34: 47–70.

    Article  CAS  Google Scholar 

  • Gibeaut, D.M., N. Karuppiah, S.-R. Chang, T.G. Brock, B. Vadlamudi, D. Kim, N.S. Ghosheh, D.L. Rale, N.C. Carpita and P.B. Kaufman. 1990. Cell wall and enzyme changes during graviresponse of the leaf-sheath pulvinus of oat (Avena sativa).Plant Physiol. 94: 411–416.

    Article  PubMed  CAS  Google Scholar 

  • Heigler, C.H. 1995. The functions and biogenesis of native cellulose.In Cellulose Chemistry and Its Applications. Eidited by Nevell, T.P. and S.H. Zeronian. pp. 30–83. Ellis Hortwood Limited, Chichester.

    Google Scholar 

  • Hoson, T. 1993. Regulation of polysaccharide breakdown during auxin-induced cell wall loosening.J. Plant Res. 106: 369–381.

    Article  CAS  Google Scholar 

  • Hoson, T., S. Kamisaka, R. Yamamoto, M. Yamashita and Y. Masuda. 1995. Automorphosis of maize shoots under simulated microgravity on three-dimensional clinostat.Physiol. Plant. 93: 346–351.

    Article  CAS  Google Scholar 

  • Ignold, E., M. Sugiyama and A. Komamine. 1998. Secondary cell wall formation: Changes in cell onstiluents during the differentiation of isolated mesophyll cells ofZinnia elegans to tracheary elements.Plant Cell Physiol. 29: 295–303.

    Google Scholar 

  • Itoh, T., R.M. O’Neil, R.M. Jr.Brown. 1984 Interference of cell wall regeneartion ofBoergsenia forbessi protoplasts by Tinopal LPW, a fluorescent brightening agent.Protoplasma 123: 174–183.

    Article  CAS  Google Scholar 

  • Kasahara, H., M. Shiwa, Y. Takeuchi and M. Yamada. 1995. Effects of hypergravity on the elongation growth in radish and cucumber hypocotyls.J. Plant Res. 108: 59–64.

    Article  PubMed  CAS  Google Scholar 

  • Kokubo, A., N. Sakurai, S. Kuraishi and K. Takeda. 1991. Culm brittleness of barley (Hordeum vulgare L.) mutants is caused by smaller number of cellulose molecules in cell wall.Plant Physiol. 97: 509–514.

    Article  PubMed  CAS  Google Scholar 

  • Kudlicka, K. and R.M. Jr.Brown. 1987. Cellulose and callose biosynthesis in higher plants. I. Solubilization and separation of (1,3)-and (l,4)-β-glucan synthase activities from mung bean.Plant Physiol. 115: 643–656.

    Article  Google Scholar 

  • Li, L. and R.M. Jr.Brown. 1993. β-Glucan synthesis in the cotton fiber. II. Regulation and kinetic properties of β-glucan syntheases.Plant Physiol. 101: 1143–1148.

    PubMed  CAS  Google Scholar 

  • Li, L., R.R. Jr.Drake, S. Clement and R.M. Jr Brown. 1993. β-Glucan synthesis in the cotton fiber. III. Identification of UDP-Glc-binding subunits of β-glucan syntheases by photoaffinity labeling with [β-31P]5’-N3-UDP-Glc.Plant Physiol. 101: 1149–1156.

    PubMed  CAS  Google Scholar 

  • Lin, F.C., R.M. Jr.Brown, J.B. Cooper and D.P. Delmer. 1995. Synthesis of fibrilin vitro by a solubilized cellulose synthase fromAcetobactor xylinnum.Science 230: 822–825.

    Article  Google Scholar 

  • Masuda, Y. 1990. Auxin-induced cell elogation and cell wall changes.Bot. Mag. Tokyo 103: 345–370.

    Article  CAS  Google Scholar 

  • Masuda, H., T. Ozeki, S. Amino and A. Komamine. 1984. Changes in cell wall polysaccharides during elongation in a 2,4-D free medium in a carrot suspension culture.Physiol. Plant. 62: 65–72.

    Article  CAS  Google Scholar 

  • Mizuta, S. 1985. Assembly of cellulose synthesizing complexes on the plasma membrane ofBoodlea coacto.Plant Cell Physiol. 26: 1443–1453.

    CAS  Google Scholar 

  • Morvan, C, A.M. Abdul Hafez, A. Jauneau, B. Thoiron and M. Demarty. 1991. Incorperation of D-[U-14C] glucose in cell wall of linum plantlets during the first steps of growth.Plant Cell Physiol. 32: 609–621.

    CAS  Google Scholar 

  • Mueller, S.C. and R.M. Jr.Brown. 1982. The control of cellulose microfibril deposition in the cell wall of higher plant. I. Can directed membrane flow oriented cellulose microfibrils? Indirect evidence from freeze-fractured plasma membranes of maize and pine seedlings.Planta 154: 489–500.

    Article  CAS  Google Scholar 

  • Okuda, K., L. Li, K. Kudlicka, S. Kuga and R.M. Jr.Brown. 1993. β-Glucan synthesis in the cotton fiber. 1. Identification of β-1, 4-and β-l, 3-glucans synthesizedin vitro.Plant Physiol.101: 1131–1142.

    PubMed  CAS  Google Scholar 

  • Ordin, L. and M.A. Hall. 1967. Studies of cellulose synthesis by a cell-free oat coleoptile enzyme system. Inactivation by airborne oxitants.Plant Physiol. 42: 205–212.

    Article  PubMed  CAS  Google Scholar 

  • Ricard, J. and G. Noat. 1986. Electrostatic effects and the dynamics of enzyme reaction at the surface of plant cell.Eur. J. Biochem. 155: 199–202.

    Article  PubMed  Google Scholar 

  • Sakurai, N. 1991. Cell wall functions in growth and development-a physical and chemical point of view-.Bot. Mag. Tokyo 104: 235–251.

    Article  Google Scholar 

  • Sakurai, N., S. Tanaka and S. Kuraishi. 1987. Changes in wall polysaccharides of squash (Cucurbita maxima Duch.) hypocotyls under water stress condition. I. Wall sugar composition and growth as affected by water stress.Plant Cell Physiol. 28: 1051–1058.

    CAS  Google Scholar 

  • Schenk, R.V. and A.C. Hildebrandt. 1972. Medium and techniques for induction and growth of monocotyledon.Can. J. Bot. 50: 199–204.

    Article  CAS  Google Scholar 

  • Shedletzky, E., M. Shmuel, T. Trainin, S. Kalman and D. Delmer. 1992. Cell wall structure in cells adapted to growth on the cellulose-synthesis inhibitor 2,6-dichlorobenzonitrile.Plant Physiol. 100: 120–130.

    Article  PubMed  CAS  Google Scholar 

  • Stommel, J.R. and P.W. Simon. 1990. Multiple forms of invertase fromDaucus carota cell cultures.Phytochem. 29: 2087–2089.

    Article  CAS  Google Scholar 

  • Taiz, L. 1998. Plant cell expansion: Regulation of cell wall mechanical properties.Annu. Rev. Plant Physiol. 35: 585–657.

    Article  Google Scholar 

  • Takeuchi, Y. and A. Komamine. 1987. Changes in the composition of cell wall polysaccharides of suspension-culturedVinca rosea cells during culture.Physiol. Plant. 42: 21–28.

    Article  Google Scholar 

  • Talmadge, K.W., K. Keegstra, W.D. Bauer and P. Albersheim. 1973. The structure of plant cell walls. I. The macromolecular components of the walls of suspension-cultured sycamore cells with a detailed analysis of the pectic polysaccharides.Plant Physiol. 15: 158–173.

    Article  Google Scholar 

  • Wakabayashi, K., N. Sakurai and S. Kuraishi. 1991. Effect of ABA on synthesis of cell-wall polysaccharides in segments of etiolated squash hypocotyl. II. Levels of UDP-neutral sugars.Plant Cell Physiol. 32: 427–432.

    CAS  Google Scholar 

  • Yeo, U.-D. and S. Kuraishi. 1992. Indution and growth of calli from cellulose-dificient mutants of barley (Honleum vulgare L.).In Plant Cell Walls as Biopolymers with Physiological Functions. Edited by Masuda, Y. XXXII Yamada Conference, pp. 395–397. Yamada Science Foundation, Osaka.

    Google Scholar 

  • Yeo, U.-D., W.-Y. Soh, H. Tasaka, N. Sakurai, S. Kuraishi and K. Takeda. 1995. Cell wall polysaccharides of callus and suspension-cultured cells from three cellulose-less mutants of barley (Hordeum vugare L.).Plant Cell Physiol 36: 931–936.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeo, UD., Soh, WY., Nakagawa, N. et al. Long-term effects of several biochemical and physical factors on cellulose biosynthesis in callus and suspension cultures of normal and mutant barley (Hordeum vulgare L.) strains producing less cellulose. J. Plant Biol. 41, 219–226 (1998). https://doi.org/10.1007/BF03030256

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03030256

Keywords

Navigation