Skip to main content
Log in

Photonic crystals and the real world of optical telecommunications

Les Cristaux Photoniques et le Monde Réel des Telecommunications Optiques

  • Published:
Annales Des Télécommunications Aims and scope Submit manuscript

Abstract

The last decade has seen a tremendous interest in the field of photonic crystals. After a review of the basic properties of ideal two-dimensional photonic crystals, we describe the recent advances that lead to consider them as good candidates for a powerful control of light in future miniature photonic devices. The choice of devices is oriented in view of possible applications to high-density telecommunication optical circuits. We first mainly focus on integrated optics with 2D photonic crystals that are the most fascinating in terms of miniaturisation with existing technologies. We discuss the critical issues for minimising the propagation losses in photonic-crystal waveguides as well as the interest of high-Q cavities and the last advances in building-blocks for ultra-compact photonic integrated circuits. We also show the recent advances in microstructured fibres, that are certainly promised to be the most immediate application of photonic crystals in the real world of optical communications. Finally, we present new technologies and architectures that open the way to three-dimensional structures with the ultimate goal of a full control of light. This is followed by conclusive remarks on what photonic crystals can bring to the field of telecommunications.

Résumé

La dernière décennie a été marquée d’un intérêt sans précédent pour le domaine des cristaux photoniques. Après une brève revue des propriétés de base des cristaux photoniques bidimensionnels idéaux, nous décrivons les avancées récentes qui amènent à les considérer comme de bons candidats pour un contrôle efficace de la lumière dans les futurs dispositifs photoniques miniatures. Le choix des dispositifs est orienté en vue d’applications possibles aux circuits optiques à haute densité. En premier lieu, nous nous focalisons principalement sur l’optique intégrée avec les cristaux photoniques bidimensionnels qui sont les plus fascinants en termes de miniaturisation à partir des technologies existantes. Nous discutons en détail les points critiques pour minimiser les pertes de propagation dans les guides d’onde à cristal photonique, de même que l’intérêt des cavités à Q élevé et les dernières avancées dans la réalisation des briques de base pour des circuits photoniques intégrés ultra-compacts. Nous montrons aussi les récentes avancées dans les fibres microstructurées qui sont certainement promises à être l’application la plus immédiate des cristaux photoniques dans le monde réel des télécommunications optiques. Finalement, nous présentons des nouvelles techniques et des nouvelles architectures qui ouvrent la voie aux structures tridimensionnelles dont le but ultime est le contrôle total de la lumière. Ceci est suivi de remarques de conclusion quant aux apports possibles des cristaux photoniques au domaine des télécommunications optiques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Astratov (V. N.), Culshaw (I. N.), Stevenson (R. M.), Whittaker (D. M.), Skolnick (M. S.), Krauss (T. F.), Rue (R. M. D. L.),Resonant Coupling of Near-Infrared Radiation to Photonic Band Structure Waveguides, J. Lightwave Technol.,17, pp. 2050–2057, (1999).

    Article  Google Scholar 

  2. Baba (T.), Fukaya (N.), Yonekura (J.),Observation of light propagation in photonic crystal optical waveguides with bends, Electron. Lett.,35, pp. 654–655, (1999).

    Article  Google Scholar 

  3. Baba (T.), Motegi (A.), Iwai (T.), Fukaya (N.), Watanabe (Y.), Sakai (A.), “Light propagation characteristics of straight single line defect waveguides in photonic crystal slabs fabricated into a silicon on insulator substrate”, IEEE J. Quantum Electron.,38, pp. 743–752, (2002).

    Article  Google Scholar 

  4. Benisty (H.),Modal analysis of optical guides with two-dimensional photonic band-gap boundaries, J. Appl. Phys.,79, pp. 7483–7492, (1996).

    Article  Google Scholar 

  5. Benisty (H.), Gérard (J.-M.), Houdré (R.), Rarity (J.), Weisbuch (C.), Eds.,Confined Photon Systems: Fundamentals and Applications, (Springer, Heidelberg, 1999).

    MATH  Google Scholar 

  6. Benisty (H.) et al., Optical and confinement properties of two-dimensional photonic crystals, J. Lightwave Technol.,17, pp. 2063–2077, (1999).

    Article  Google Scholar 

  7. Benisty (H.), Labilloy (D.), Weisbuch (C.), Smith (C. J. M.), Krauss (T. F.), Béraud (A.), Cassagne (D.), Jouanin (C.),Radiation losses of waveguide-based two-dimensional photonic crystals: positive role of the substrate, Appl. Phys. Lett.,76, pp. 532–534, (2000). (T. F.),Jouanin (C.),Cassagne (D.),Finite-depth and intrinsic losses in vertically etched two-dimensional photonic crystals, Optical and Quantum Electronics, accepted (dec. 2001).

    Article  Google Scholar 

  8. Benisty (H.), Lalanne (P.), Olivier (S.), Rattier (M.), Weisbuch (C.), Smith (C. J. M.), Krauss (T. F.), Jouanin (C.), Cassagne (D.), “Finite-depth and intrinsic losses in vertically etched two-dimensional photonic crystals”, Optical and Quantum Electronics,34, p. 205–215, (2002).

    Article  Google Scholar 

  9. Benisty (H.), Olivier (S.), Weisbuch (C.), Agio (M.), Kafesaki (M.), Soukoulis (C. M.), Qiu (M.), Swillo (M.), Karlsson (A.), Jaskorzynska (B.), Moosburger (J.), Kamp (M.), Forchel (A.), Ferrini (R.), Houdré (R.), Oesterle (U.), «Models and measurements for the transmission of submicron-width waveguide bends defined in two-dimensional photonic crystals”, IEEE J. Quantum Electron.38, p. 770–785, (2002).

    Article  Google Scholar 

  10. Berger (V.), Gauthier-Lafaye (O.), Costard (E.), “Fabrication of a 2D photonic bandgap by a holographic method”, Electron. Lett.,33, pp. 425–426, (1997).

    Article  Google Scholar 

  11. Birner (A.), Gruning (U.), Ottow (S.), Schneider (A.), Müller (F.), Lehmann (V.), Föll (H.), Gösele (U.),Macroporous silicon: A two-dimensional photonic bandgap material suitable for the near-infrared spectral range, Phys. Status Solidi A,165, pp. 111–117, (1998).

    Article  Google Scholar 

  12. Birner (A.), Wehrspohn (R. B.), Gösele (U.M.), Busch (K.), “Silicon-based photonic crystals”, Adv. Mater.13, pp. 377–388, (2001).

    Article  Google Scholar 

  13. Blanco (A.), Chomski (E.), Grabtchak (S.), Ibiskate (M.), John (S.), Leonard (S. W.), Lopez (C.), Meseguer (F.), Miguez (H.), Mondia (J.P.), Ozin (G. A.), Toader (O.), Van Driel (H. M.), “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers”, Nature,405, pp. 437–440, (2000).

    Article  Google Scholar 

  14. Braun (P.V.), Zehner (R.W.), White (C.A.), Weldon (M.K.), Kloc (C.), Patel (S.S.), Wiltzius (P.), “Epitaxial growth of high dielectric contrast three-dimensional photonic crystals”,Adv. Mater.,13, No. 10, pp. 721–724, (2001).

    Article  Google Scholar 

  15. Bogaerts (W.) et al., Out-of-plane scattering in photonic crystals, IEEE Phot. Technol. Lett.,13, pp. 565–567, (2001).

    Article  Google Scholar 

  16. Boroditsky (M.), Krauss (T. F.), Coccioli (R.), Vrijen (R.), Bhat (R.), Yablonovitch (E.),Light extraction from optically pumped light-emitting diode by thin-slab photonic crystal, Appl. Phys. Lett.,75, pp. 1036–1038, (1999).

    Article  Google Scholar 

  17. Boscolo (S.), Conti (C.), Midrio (M.), Someda (C. G.), “Numerical Analysis of Propagation and Impedance Matching in 2-D Photonic Crystal Waveguides With Finite Length”, J. Lightwave Technol.,20, p.304–310, 2002.

    Article  Google Scholar 

  18. Brunhes (T.), Boucaud (P.), Sauvage (S.), Aniel (F.), Lourtioz (J.-M.), Hernandez (C.), Campidelli (Y.), Bensahel (D.), Faini (G.), Sagnes (I.), “Electroluminescence of Ge/Si self-assembled quantum dots grown by chemical vapor deposition”, Appl. Phys. Lett.,77, 1822 (2000).

    Article  Google Scholar 

  19. Campbell (M.), Scharp (D.), Harrison (M.), Denning (R.), Tuberfield (A.), “Fabrication of photonic crystals for the visible spectrum by holographic lithography”, Nature,404, pp. 53–56, (2000).

    Article  Google Scholar 

  20. Cassagne (D.), Jouanin (C.), Bertho (D.),Hexagonal photonic band gaps, Phys. Rev.,B53, p.7134, 1996.

    Google Scholar 

  21. Cheng (C.), Scherer (A.), Arbet-Engels (V.), Yablonovitch (E.), “Lithographic band gap tuning in photonic band gap crystals”, J. of Vac. Sci. Technol. B,B14, no 6, pp. 4110–4114, (1996).

    Article  Google Scholar 

  22. Chelnokov (A.), David (S.), Wang (K.), Marty (F.), Lourtioz (J-M.), “Near-infrared Yablonovitelike photonic crystals by focused ion beam etching of macroporous silicon”, Appl. Phys. Lett.,77, pp. 2943–2945, (2000).

    Article  Google Scholar 

  23. Chelnokov (A.), Wang (K.), Rowson (S.), Garoche (P.), Lourtioz (J-M.), “Fabrication of 2D and 3D silicon photonic crystals by deep etching”, IEEE Journal of Selected Topics in Quantum Electronics,8, No. 4, pp. 919–927, (2002).

    Article  Google Scholar 

  24. Chow (E.) et al., Three-dimensional control of light in a two-dimensional crystal slab, Nature,407, pp. 983–986, (2000).

    Article  Google Scholar 

  25. Chow (E.), Lon (S. Y.), Wendt (J. R.), Johnson (S. G.), Joannopoulos (J. D.),Quantitative analysis of bending efficiency in photonic crystal waveguide bends at λ=1.55 µm wavelengths, Opt. Lett.,26, pp. 286–288, (2001).

    Article  Google Scholar 

  26. Chutinan (A.), Okano (M.), Noda (S.), “Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs”, Appl. Phys. Lett.80, pp. 1698–1700, (2002).

    Article  Google Scholar 

  27. Cowan (A. R.), Young (J. F.),Mode matching for second-harmonic generation in photonic crystal waveguides, Phys. Rev.,B 65, 085106, (2002).

    Google Scholar 

  28. Cuisin (C.), Chelnokov (A.), Decanini (D.), Peyrade (D.), Chen (Y.), Lourtioz (J.-M.), “Submicrometer dielectric and metallic structures fabricated from resist templates”, Optical and Quantum Electronics,34, no. 1–3, pp. 13–26, (2002).

    Article  Google Scholar 

  29. Dantec (N. L.), Benyattou (T.), Guillot (G.), Spisser (A.), Seassal (C.), Leclercq (J. L.), Viktorovitch (P.), Rondi (D.), Blondeau (R.),Tunable microcavity based on InP-Air Bragg mirrors, IEEE J. Sel. Top. in Quantum Electron.,5, pp. 111–114, (1999).

    Article  Google Scholar 

  30. David (S.), Chelnokov (A.), Lourtioz (J.-M.), “Lateral confinement in macroporous silicon crystals”, J. Opt. A: Pure and Applied Optics,4, no 4, pp. 468–473, (2002).

    Article  Google Scholar 

  31. D’urso (B.), Painter (O.), O’brien (J.), Tombrello (T.), Yariv (A.), Scherer (A.),Modal reflectivity in finite-depth two-dimensional photonic crystal microcavities, J. Opt. Soc. Am.,B 15, pp. 1155–1159, (1998).

    Google Scholar 

  32. Enoch (S.), Gralak (B.), Tayeb (G.), “Enhanced emission with angular confinement from photonic crystals”, Appl. Phys. Lett.,81, No. 9, pp. 1588–1591, (2002).

    Article  Google Scholar 

  33. Fan (S.), Villeneuve (P. R.), Joannopoulos (J. D.),High extraction efficiency of spontaneous emission from slabs of photonic crystals, Phys. Rev. Lett.,78, p. 3294, (1997).

    Article  Google Scholar 

  34. Fedeli (J-M.),Laval (S.), “Microphotonique silicium pour connexions rapides sur circuit intégré”, Revue de l’Électricité et de l’Électronique, Ree No 9, pp. 62–67 (2002).

  35. Fehrembach (A.-L.), Enoch (S.), Sentenac (A.), “Highly directive light sources using two-dimensional photonic crystal slabs.” Appl. Phys. Lett.,79, pp. 4280–4282, (2001).

    Article  Google Scholar 

  36. Feng (X.-P.), Arakawa (Y.),Off-plane dependence angle of photonic band gap in a two-dimensional photonic crystal, IEEE J. Quantum. Elect.,32, pp. 535–541, (1996).

    Article  Google Scholar 

  37. Ferrini (R.), Leuenberger (D.), Mulot (M.), Qiu (M.), Moosburger (J.), Kamp (M.), Forchel (A.), Anand (S.), Houdré (R.), “Optical Study of Two-Dimensional InP-Based Photonic Crystals by Internal Light Source Technique”, IEEE J. Quantum Electron.,38, p. 786–799, (2002).

    Article  Google Scholar 

  38. Ferrini (R.), Lombardet (B.), Wild (B.), Houdre (R), Olivier (S.), Benisty (H.), Dioudi (A.), Legouezigou (L.), Hubert (S.), Sainson (S.), Chandouineau (J.-P.), Fabre (S.), Pommereau (F.), Duan (G.-H.), “Optical characterisation of 2D InP-based photonic crystals fabricated by inductively coupled plasma etching”, Electron. Lett.,38, p. 962–964, (2002).

    Article  Google Scholar 

  39. Ferrini (R.) Houdré (R.), Benisty (H.), Qiu (M.), Moosburger (J.), “Radiation losses in planar photonic crystals: two-dimensional representation of hole depth and shape by an imaginary dielectric constant”, J. Opt. Soc. Am.B20, pp. 469–478, (2003).

    Google Scholar 

  40. Fleming (J.G.), Lin (S.-Y.),Three-dimensional photonic crystal with a stop-band from 1.35 to 1.95 µm, Opt. Lett.,24, no 1, pp. 49–51, (1999).

    Article  Google Scholar 

  41. Forchel (A.)et al., lasers with PBG mirrors, IPRM’99, Davos (1999).

  42. Gadot (F.), Chelnokov (A.), De Lustrac (A.), Crozat (P.), Lourtioz (J-M.), Cassagne (D.), Jouanin (C.),Experimental demonstration of complete photonic bandgap in graphite structure, Appl. Phys. Lett.,71, pp. 1780–1782, (1997).

    Article  Google Scholar 

  43. Golubev (V.G.), Davydov (V.Y.), Kartenko (N.F.), Kurdyukov (D.A.), Medvedev (A.V.), Pevtsov (A.B.), Scherbakov (A.V.), Shadrin (E.B.), “Phase transition-governed opal-VO2 photonic crystal”, Appl. Phys. Lett.,79, No. 14, pp. 2127–2129, (2001).

    Article  Google Scholar 

  44. Grillet (C.) et al., Characterisation of 2D photonic crystals cavities on InP membranes, European Phys. Journal D,16, pp. 37–44 (2001).

    Article  Google Scholar 

  45. Grüning (U.), Lehmann (V.), Ottow (S.), Busch (K.), Macroporous silicon with a complete 2D PBG centered at 5 µm, Appl. Phys. Lett.,68, pp. 747–749, (1996).

    Article  Google Scholar 

  46. Happ (T. D.), Kamp (M.), Klopf (F.), Reithmaier (J. P.), Forchel (A.),Bent laser cavity based on 2D photonic crystal waveguide, Electron. Lett.,26, pp. 324–325, (2000).

    Article  Google Scholar 

  47. Happ (T. D.), Markard (A.), Kamp (M.), Forchel (A.), Anand (A.), “Sigle-mode operation of coupled-cavity lasers based on two-dimensional photonic crystals”, Appl. Phys. Lett.,79, p.4091–4093, (2001).

    Article  Google Scholar 

  48. Harvey (A.F.), Microwave Engineering, Academic Press, London, pp. 592–605, (1963).

    MATH  Google Scholar 

  49. Ho (K.), Chan (C.), Soukoulis (C.),Existence of a Photonic Gap in Periodic Dielectric Structures, Physical Review Letters, 65, No. 25, pp. 3152–3155, (1990).

    Article  Google Scholar 

  50. Ho (K.), Chan (C.), Soukoulis (C.), Biswas (R.), Sigalas (M.),Photonic bandgaps in three dimensions: new layer by layer periodic structures, Solid State Communications, 89, pp. 413–416, (1994).

    Article  Google Scholar 

  51. Holland (B.T.), Blanford (C.E.), Stein (A.), Science, 281, p. 538, (1998).

    Article  Google Scholar 

  52. Imada (M.), Noda (S.), Chutinan (A.), Tokuda (T.), Murata (M.), Sasaki (G.) Coherent two-dimensional laser action in surface-emitting laser with triangular photonic crystal structure, Appl. Phys. Lett., 75, 316–318, (1999).

    Article  Google Scholar 

  53. See the Optimistic web site of the ISE-EU program, http://www.intec.rug.ac.be/ist-optimist/pdf/network/pres_ecoc2000/

  54. Joannopoulos (J. D.), Meade (R. D.), Winn (J. N.), Photonic Crystals, Molding the Flow of Light (Princeton University Press, Princeton, NJ, 1995).

    MATH  Google Scholar 

  55. Kawai (N.), Inoue (K.), Carlsson (N.), Ikeda (N.), Sugimoto (Y.), Asakawa (K.), Takemori (T.),Confined band gap in an air-bridge type of two-dimensional AlGaAs photonic crystal, Phys. Rev. Lett., 86, pp. 2289–2292, (2001).

    Article  Google Scholar 

  56. Kogelnik (H.), Shank (C. V.),Coupled wave theory of distributed feedback lasers, J. Appl. Phys., 43, pp. 2327–2335, (1972).

    Article  Google Scholar 

  57. Kosaka (H.), Kawashima (T.), Notomi (N.), Tamamura (T.), Sato (T.), Kawakami (S.), “Superprism phenomena in photonic crystals”, Phys. Rev. B 58, p. 10096–10099, (1998).

    Article  Google Scholar 

  58. Krauss (T. F.), De La Rue (R. M.), Brand (S.),Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths, Nature, 383, pp. 699–702, (1996).

    Article  Google Scholar 

  59. Labilloy (D.) et al., Quantitative measurement of transmission, reflection and diffraction of two-dimensional photonic bandgap structures at near-infrared wavelengths, Phys. Rev. Lett., 79, pp. 4147–4150 (1997).

    Article  Google Scholar 

  60. Labilloy (D.), Benisty (H.), Weisbuch (C.), Krauss (T. F.), Houdré (R.), Oesterle (U.),Use of guided spontaneous emission of a semiconductor to probe the optical properties of two-dimensional photonic crystals, Appl. Phys. Lett., 71, pp. 738–740, (1997).

    Article  Google Scholar 

  61. Labilloy (D.), Benisty (H.), Weisbuch (C.), Krauss (T. F.), Smith (C. J. M.), Houdré (R.), Oesterle (U.),High-finesse disk microcavity based on a circular Bragg reflector, Appl. Phys. Lett., 73, pp. 1314–1316, (1998).

    Article  Google Scholar 

  62. Labilloy (D.) et al., inFundamentals and Applications of Confined Photon Systems Benisty (H.), Gérard (J.-M.), Houdré (R.), Rarity (J.), Weisbuch (C.), Eds. (Springer, Heidelberg, 1999).

    Google Scholar 

  63. Labilloy (D.), Benisty (H.), Weisbuch (C.), Smith (C. J. M.), Krauss (T. F.), Houdré (R.), Oesterle (U.),Finely resolved transmission spectra and band structure of two-dimensional photonic crystals using InAs quantum dots emission, Phys Rev., B59, pp. 1649–1652, (1999).

    Google Scholar 

  64. Lalanne (P.), Benisty (H.),Ultimate limits of two-dimensional photonic crystals etched through waveguides: an electromagnetic analysis, J. Appl. Phys., 89, pp. 1512–1514, (2001).

    Article  Google Scholar 

  65. Lardenois (S.), Pascal (D.), Vivien (L.), Cassan (E.), Laval (S.), Orobtchouk (R.), Heitzmann (M.), Bouzaida (N.), Mollard (L.), “Ultralow-loss sub-micrometer Si waveguides and corner mirrors on SOI substrates”, Opt. Lett.28, pp. 1150–1152, (2003).

    Article  Google Scholar 

  66. Laval (S.), “Optical interconnects: the challenge”, C. R. Acad. Sci. Paris, t.1, Série IV, pp. 941–949, (2000).

  67. Lee (R. K.), Painter (O. J.), D’urso (B.), Scherer (A.), Yariv (A.),Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths, Appl. Phys. Lett., 71, PP. 1522–1524, (1999).

    Article  Google Scholar 

  68. Lee (K.K.), Lim (D.R.), Kimerling (L.C.), “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction‰” Opt. Lett., 26, pp. 1888–1890 (2001).

    Article  Google Scholar 

  69. Lehmann (V.), Föll (H.), “Formation mechanism and properties of electrochemically etched trenches in n-type silicon”, J. Electrochem. Soc., 137, no 2, pp. 653–659, (1990).

    Article  Google Scholar 

  70. Leonard (S. W.), Driel (H. M. v.), Busch (K.), John (S.), Birner (A.), Li (A.-P.), Müller (F.), Gösele (U.), Lehmann (V.),Attenuation of optical transmission within the band gap of thin two-dimensional macroporous silicon photonic crystals, Appl. Phys. Lett., 75, PP. 3063–3065, (1999).

    Article  Google Scholar 

  71. Leonard (S. W.), Driel (H. M. V.), Birner (A.), Gösele (U.), Villeneuve (P. R.),Single-mode transmission in two-dimensional macroporous silicon photonic crystal waveguides, Optics Lett., 25, pp. 1550–1552, (2000).

    Article  Google Scholar 

  72. Letartre (X.), Seassal (C.), Grillet (C.),Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes, Appl. Phys. Lett., 79, pp.2313–2314, (2001).

    Article  Google Scholar 

  73. Lin (S.-Y.), Fleming (J.G.), Sigalas (M. M.), Biswas (R.), Ho (K.M.), “Photonic band-gap microcavities in three dimensions”, Phys. Rev. B, 59, no. 24, pp. R15579-R15582, (1999).

    Article  Google Scholar 

  74. Lin (S. Y.), Chow (E.), Johnson (S. G.), Joannopoulos (J. D.),Demonstration of highly efficient waveguiding in a photonic crystal slab at the 1.5-µm wavelength, Optics Lett., 25, pp. 1297–1299, (2000).

    Article  Google Scholar 

  75. Lin (S.-Y.), Fleming (J.G.), Lin (R.), Sigalas (M. M.), Biswas (R.), Ho (K.M.), “Complete three-dimensional photonic bandgap in a simple cubic structure”, J. Opt. Soc. Am.B.18, p. 32, (2001).

    Google Scholar 

  76. Loncar (M.), Doll (T.), Vuckovic (J.), Scherer (A.),Design and fabrication of silicon photonic crystal optical waveguides, Journal of lightwave technology,18, pp. 1402–1411, (2000).

    Article  Google Scholar 

  77. Loncar (M.), Nedeljkovic (D.), Doll (T.), Vuckovic (J.), Scherer (A.), Pearsall (T.),Waveguiding in planar photonic crystals, Appl. Phys. Lett.,77, pp. 1937–1939, (2000).

    Article  Google Scholar 

  78. Loncar (M.), Nedeljkovic (D.), Pearsall (T.), Vukovic (J.), Scherer (A.), Kuchinsky (S.), Allan (D.), “Experimental and theoretical confirmation of Bloch modes light propagation in planar photonic crystal waveguides”, Appl. Phys. Lett.,80, No 10, pp. 1689–1691, (2002).

    Article  Google Scholar 

  79. März (R.), Integrated Optics: design and modeling,Culshaw (B.), Rogers (A.), Taylor (A.), Eds., The Artech House Optoelectronics Library (Artech House, Boston, 1994).

    Google Scholar 

  80. Meade (R. D.), Brommer (K. D.), Rappe (A. M.), Joannopoulos (J. D.),Existence of aphotonic band gap in two dimensions, Appl. Phys. Lett.,61, p. 495, (1992).

    Article  Google Scholar 

  81. Mekis (A.), Chen (J. C.), Kurland (I.), Villeneuve (P. R.), Joannopoulos (J. D.), “High transmission through sharp bends in photonic crystals waveguides”, Phys. Rev. Lett.,77, p.3787–3790, (1996).

    Article  Google Scholar 

  82. Moosbürger (J.), Kamp (M.), Forchel (A.), Olivier (S.), Benisty (H.), Weisbuch (C.), Oesterle (U.), “Enhanced transmission through photonic-crystal-based bend waveguides by bend engineering,” Appl. Phys. Lett.,79, pp. 3579–3581, (2001).

    Article  Google Scholar 

  83. Moosburger (J.), Kamp (M.), Forchel (A.), Oesterle (U.), Houdré (R.), “Transmission spectroscopy of photonic crystal based waveguides with resonant cavities”, J. Appl. Phys.,91, pp. 4791–4794, (2002).

    Article  Google Scholar 

  84. Noda (S.), Yamamoto (N.), Kobayashi (H.), Okano (M.), Tomoda (K.),Optical properties of three-dimensional photonic crystals based on III-V semiconductors at infrared to near-infrared wavelength, Appl. Phys. Lett.,75, p. 905, (1999).

    Article  Google Scholar 

  85. Noda (S.), Chutinan (A.), Imada (M.),Trapping and emission of photons by a single defect in a photonic bandgap structure, Nature,407, pp. 608–610, (2000).

    Article  Google Scholar 

  86. Noda (S.), Yokoyama (M.), Imada (M.), Chutinan (A.), Mochizuki (M.) Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design, Science 293, pp. 1123–1125, (2001).

    Article  Google Scholar 

  87. Noda (S.), Imada (M.), Okano (M.), Ogawa (S.), Mochizuki (M.), Chutinan (A.), “Semiconductor three-dimensional and two-dimensional photonic crystals and devices”, IEEE J. Quantum Electron.,38, pp. 726–735, (2002).

    Article  Google Scholar 

  88. Notomi (M.),Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap, Phys. Rev.,B 62, pp. 10696–10705, (2000).

    Google Scholar 

  89. Notomi (M.), Tamamura (T.), Kawashima (T.), Kawakami (S.), “Drilled alternating-layer three-dimensional photonic crystals having a full photonic band gap”, Appl. Phys. Lett.,77, no. 26, pp. 4256–4258, (2000).

    Article  Google Scholar 

  90. Notomi (M.), Yamada (K.), Shinya (A.), Takahashi (J.), Takahashi (C.), Yokohama (I.), “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs”, Phys. Rev. Lett.,87, p. 253902, (2001).

    Article  Google Scholar 

  91. Notomi (M.), Schinya (A.), Yamada (K.), Takahashi (J.-I.), Takahashi (C.), Yokohama (I.), “Structural tuning of guiding modes of a line defect waveguide of silicon on insulator photonic crystal slabs”, IEEE J. Quantum Electron.,38, pp. 736–742, (2002).

    Article  Google Scholar 

  92. Olivier (S.), Rattier (M.), Benisty (H.), Smith (C. J. M.), De La. Rue (R.M.), Krauss (T. F.), Oesterle (U.), Houdré (R.), Weisbuch (C.), “Mini stopbands of a one dimensional system: the channel waveguide in a two-dimensional photonic crystal,” Phys. Rev. B,63, pp. 113311, (2001).

    Article  Google Scholar 

  93. Olivier (S.), Benisty (H.), Rattier (M.), Weisbuch (C.), Qiu (M.), Karlsson (A.), Smith (C. J. M.), Houdré (R.), Oesterle (U.),Resonant and nonresonant transmission through waveguide bends in a planar photonic crystal, Appl. Phys. Lett.,79, pp. 2514–2516, (2001).

    Article  Google Scholar 

  94. Olivier (S.), Smith (C.), Benisty (H.), Weisbuch (C.), Krauss (T.), Houdré (R.), Oesterle (U.), “Cascaded photonic crystal guides and cavities: spectral studies and their impact on integrated optics design”, IEEE J. Quantum Electron.,38, pp. 816–824, (2002).

    Article  Google Scholar 

  95. Olivier (S.), Benisty (H.), Weisbuch (C.), Smith (C. J. M.), Krauss (T. F.), Houdré (R.), Oesterle (U.), “Improved 60° bend transmission of submicron-width waveguides defined by two-dimensional photonic crystals”, IEEE J. Lightwave Technol. Lett.,20, pp. 1198–1203, (2002).

    Article  Google Scholar 

  96. Olivier (S.), “Nouvelles structures miniatures pour l’optique intégrée à base de cristaux photonique planaires”, thèse de l’Université Paris VI, (Novembre 2002).

  97. Ortigosa-Blanch (A.), Knight (J. C.), Wadsworth (W. J.), Arriaga (J.), Mangan (B. J.), Birks (T. A.), Russel (P. St. J.),Highly birefringent photonic crystal fibres, Opt. Lett.,25, pp. 1325–1327, (2000) — and references therein.

    Article  Google Scholar 

  98. Painter (O.), Vuckovic (J.), Scherer (A.),Defect modes of a two-dimensional crystal in an optically thin dielectric slab, J. Opt. Soc. Am.,B 16, pp. 275–285, (1999).

    Google Scholar 

  99. Painter (O. J.), Husain (A.), Scherer (A.), O’brien (J. D.), Kim (I.), Dapkus (P. D.), “Room temperature photonic crystal defect lasers at near-infrared wavelengths in InGaAsP,” J. Lightwave Techn., J. Lightwave Techn.,17, pp. 2082–2088, (1999).

    Google Scholar 

  100. Park (H.-G.), Hwang (J.-K.), Huh (J.), Ryu (H.-Y.), Lee (Y.-H.), Kim (J.-S.),Non-degenerate monopole-mode two-dimensional photonic band gap laser, Appl. Phys. Lett.,79, pp. 3032–3034, (2001).

    Article  Google Scholar 

  101. Pottier (P.), Seassal (C.), Letartre (X.), Leclercq (J. L.), Viktorovitch (P.), Cassagne (D.), Jouanin (C.),Triangular and Hexagonal High Q-Factor 2D Photonic Bandgap Cavities on III-V Suspended Membranes, J. Lightwave Techn.,17, pp. 2058–2062, (1999).

    Article  Google Scholar 

  102. Qasaimeh (O.), Singh (J.), Bhattacharya (P.), “Electro-absorption and electro-optic effect in SiGeSi quantum wells: realization of low-voltage modulators”, IEEE J. Quantum Electron.33, pp. 1532–1536, (1997).

    Article  Google Scholar 

  103. Qiu (M.), “Effective index method for heterostructure-slab waveguide-based two-dimensional photonic crystals”, Appl. Phys. Lett.81, pp. 1163–1165, (2002).

    Article  Google Scholar 

  104. Raffaele (L.), De La Rue (R. M.), Roberts (J. S.), Krauss (T. F.),Edge-emitting semiconductor microlasers with ultrashort-cavity and dry-etched high-reflectivity photonic microstructure mirrors, IEEE Photonics Technology Letters,13, pp. 176–178, (2001).

    Article  Google Scholar 

  105. Rattier (M.), Benisty (H.), Smith (C. J. M.), Béraud (A.), Cassagne (D.), Krauss (T. F.), Weisbuch (C.),Performance of waveguide-based two-dimensional photonic-crystal mirrors studied with Fabry-Pérot resonators, IEEE J. Quantum Electron.,37, pp. 237–243, (2001).

    Article  Google Scholar 

  106. Rattier (M.)et al., High extraction efficiency, laterally injected, light emitting diodes combining microcavities and photonic crystals., Optical and Quantum Electronics, (2001).

  107. Reese (C.), Becher (C.), Imamoglu (A.), Hu (E.), Gerardot (B. D.), Petroff (P. M.),Photonic crystal microcavities with self-assembled InAs quantum dots as active emitters, Appl. Phys. Lett.,78, pp. 2279–2281, (2001).

    Article  Google Scholar 

  108. Rigneault (H.), Lemarchand (F.), Sentenac (A.),Dipole radiation into grating structures, J. Opt. Soc. Am. A,17, pp. 1048–1058, (2000).

    Article  MathSciNet  Google Scholar 

  109. Robertson (W. M.), Arjavalingam (G.), Meade (R. D.), Brommer (K. D.), Rappe (A. M.), Joannopoulos (J. D.),Measurement of photonic band structure in a two-dimensional periodic array, Phys. Rev. Lett.,68, pp. 2023–2026, (1992).

    Article  Google Scholar 

  110. Romanov (S. G.), Johnson (N. P.), Fokin (A. V.), Butko (V. Y.), Yates (H. M.), Pemble (M. E.), Torres (C. M. S.), “Enhancement of the photonic gap of opal-based three-dimensional gratings”, Appl. Phys. Lett.,70, p. 2091, (1997).

    Article  Google Scholar 

  111. Rowson (S.), Chelnokov (A.), Lourtioz (J. M.), Carcenac (F.),Reflection and transmission characterisation of a hexagonal photonic crystal in the mid infrared, J. Appl. Phys.,83, p. 5061, (1998).

    Article  Google Scholar 

  112. Rowson (S.), Chelnokov (A.), Lourtioz (J.-M.), “Macroporous silicon photonic crystals at 1.55 micrometers”, Electron. Lett.,35, pp. 753–755, (1999).

    Article  Google Scholar 

  113. Rowson (S.), Chelnokov (A.), Lourtioz (J.-M.), “Two-dimensional photonic crystals in macroporous silicon photonic crystals: from mid-infrared to telecommunication wavelengths (1.3–1.55 µm)”, J. Lightwave Technol.,17, pp. 1989–1995, (1999).

    Article  Google Scholar 

  114. Sakoda (K.),Symmetry, degeneracy, and uncoupled modes in two-dimensional photonic lattices, Phys. Rev. B,52, p. 7982, (1995).

    Article  Google Scholar 

  115. Sakoda (K.), Ohtaka (K.), Ueta (T.), “Low-threshold laser oscillation due to group-velocity anomaly peculiar to two- and three-dimensional photonic crystals”, Optics Express,4, No. 12, pp. 481–489, (1999).

    Article  Google Scholar 

  116. Sakoda (K.), Optical Properties of Photonic Crystals, Springer Series in Optical Science, vol. 80, Springer, Berlin, 2001

    Google Scholar 

  117. Schwoob (E.), Benisty (H.), Weisbuch (C.), Smith (C. J. M.), Krauss (T. F.), Houdré (R.), Oesterle (U.), “Two-mode fringes in planar photonic crystal waveguides with constrictions: a probe that is sensitive to propagation losses,”J. Opt. Soc. Am. B,19, pp. 2403–2412, (2002).

    Article  Google Scholar 

  118. Sigalas (M.), Soukoulis (C. M.), Economou (E. N.), Chan (C. T.), Ho (K. M.),Photonic band gaps and defects in two dimensions: Studies of the transmission coefficient, Phys. Rev. B,48, pp. 14121–14126, (1993).

    Article  Google Scholar 

  119. Smith (C. J. M.), Krauss (T. F.), De La Rue (R. M.), Labilloy (D.), Benisty (H.), Weisbuch (C.), Oesterle (U.), Houdré (R.),In-plane microcavity resonators with two-dimensional photonic bandgap mirrors, IEE-Proc.-Optoelectron.,145, pp. 373–378, (1998).

    Article  Google Scholar 

  120. Smith (C. J. M.), Krauss (T. F.), De la Rue (R. M.), Labilloy (D.), Benisty (H.), Weisbuch (C.), Oesterle (U.), Houdré (R.),Near-infrared microcavities confined by two-dimensional photonic bandgap crystals, Electron. Lett.,35, pp. 228–230, (1999).

    Article  Google Scholar 

  121. Smith (C. J. M.), Krauss (T. F.), Benisty (H.), Rattier (M.), Weisbuch (C.), Oesterle (U.), Houdré (R.),Directionnally dependent confinement in photonic-crystal microcavities, J. Opt. Soc. Am. B,17, pp. 2043–2051, (2000).

    Article  Google Scholar 

  122. Smith (C. J. M.), De la Rue (R. M.), Rattier (M.), Olivier (S.), Benisty (H.), Weisbuch (C.), Krauss (T. F.), Houdré (R.), Oesterle (U.),Coupled guide and cavity in a two-dimensional photonic crystal, Appl. Phys. Lett.,78, pp. 1487–1489, (2001).

    Article  Google Scholar 

  123. Stefanou (N.), Modinos (A.), “Impurity bands in photonic insulators”,Phys. Rev. B,57, pp. 12127–12133, (1998).

    Article  Google Scholar 

  124. Sugimoto (Y.), Ikeda (N.), Carlsson (N.), Asakawa (K.), Kawai (N.), Inoue (K.), “Light-propagation characteristics of Y-branch defect waveguides in AlGaAs-based air-bridge-type two-dimensional photonic crystal slabs”, Opt. Lett.27, pp. 388–390, (2002).

    Article  Google Scholar 

  125. Sun (H.-B.), Matsuo (S.), Misawa (H.), “Three-dimensional photonic crystal structures achieved with two-photon-absorption, photopolymerisation of resin”, Appl. Phys. Lett.,74, no. 6, pp. 786–788, (1999).

    Article  Google Scholar 

  126. Taillaert (D.), Bogaerts (W.), Bienstman (P.), Krauss (T. F.), Van Daele (P.), Moerman (I.), Verstuyf (S.), De Mesel (K.), Baets (R.), “An Out-of-Plane Grating Coupler for Efficient Butt-Coupling Between Compact Planar Waveguides and Single-Mode Fibers”, J. Quantum Electron.38, pp. 949–955, (2002).

    Article  Google Scholar 

  127. Talneau (A.), Le Gouezigou (L.), Bouadma, (N.), “Quantitative measurement of low propagation losses at 1.55 µm on planar photonic crystal waveguides”, Opt. Lett.26, pp. 1259–1261, (2001).

    Article  Google Scholar 

  128. Talneau (A.), Le Gouezigou (L.), Bouadma (N.), Kafesaki (M.), Soukoulis, (C. M.), Agio (M.), “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 µm”, Appl. Phys. Lett.80, pp. 547–549, (2002).

    Article  Google Scholar 

  129. Talneau (A.), Lalanne (Ph.), Agio (M.), Soukoulis (C.M.), “Low-reflection photonic-crystal taper for efficient coupling between guide sections of arbitrary widths,” Opt. Lett.,27, pp. 1522–1524, (2002).

    Article  Google Scholar 

  130. Tamir (T.), Ed.,Guided wave optoelectronics, (Springer Verlag, Berlin, (1990).

    Google Scholar 

  131. Tokushima (M.), Kosaka (H.), Tomita (A.), Yamada (H.),Lightwave propagation through a 120° sharply bent single-line-defect photonic crystal waveguide, Appl. Phys. Lett.,76, pp. 952–954, (2000).

    Article  Google Scholar 

  132. Villeneuve (P. R.), Fan (S.), Joannopoulos (J. D.), Lim (K. Y.), Petrich (G. S.), Kolodzleiski (L. A.), Reif (R.), Air bridge microcavities, Appl. Phys. Lett.,67, pp. 167–169, (1995).

    Article  Google Scholar 

  133. Vuckovic (J.), Loncar (M.), Mabuchi (H.), Scherer (A.), “Design of photonic crystal microcavities for cavity QED”, Phys. Rev. E65, p. 016608, (2001).

    Article  Google Scholar 

  134. Weisbuch (C.),Rarity (J.), Eds.,Microcavities and Photonic Band Gaps: Physics and Applications, (Kluwer, Dordrecht, 1996).

  135. Wilson (R.), Karle (T.J.), Moerman (I.), Krauss (T.F.),Efficient photonic crystal Y-junctions, Journal of Physics,5, pp. S76-S80, (2003).

    Google Scholar 

  136. Whittaker (D. M.), Culshaw (I. S.),Scattering-matrix treatment of patterned multilayer photonic structures, Phys. Rev. B,60, pp. 2610–2618, (1999).

    Article  Google Scholar 

  137. Yablonovitch (E.),Inhibited Spontaneous Emission in Solid-State Physics and Electronics, Phys. Rev. Lett.,58, pp. 2059–2062, (1987).

    Article  Google Scholar 

  138. Yablonovitch (E.), Gmitter (T. J.), Leung (K. M.),Photonic band structures: the face-centered-cubic case employing non-spherical atoms, Phys. Rev. Lett.67, p. 2295, (1991).

    Article  Google Scholar 

  139. Yariv (A.), Xu (Y.), Lee (R. K.), Scherer (A.), “Coupled-resonator optical waveguide: a proposal and analysis”, Opt. Lett.24, pp. 711–713, (1999).

    Article  Google Scholar 

  140. Yoshie (T.), Vuckovic (J.), Scherer (A.), Chen (H.), Deppe (D.), “High-Quality slab photonic crystals slab cavities,” Appl. Phys. Lett.,79, pp. 4289–4291, (2001).

    Article  Google Scholar 

  141. Zijstra (T.), Van Der Drift (E.), De Dood (M.J.A.), Snoeks (E.), Polman (A.), “Fabrication of two-dimensional photonic crystal waveguides for 1.5 µm in silicon by deep anisotropic dry etching”, J. Vac. Sci. Technol. B,B 17, pp. 2734–2739, (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lourtioz, JM., Benisty, H., Chelnokov, A. et al. Photonic crystals and the real world of optical telecommunications. Ann. Télécommun. 58, 1197–1237 (2003). https://doi.org/10.1007/BF03001730

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03001730

Key words

Mots clés

Navigation