Skip to main content
Log in

A selective review of the finite element-ABC and the finite element-boundary integral methods for electromagnetic scattering

UNE REVUE SÉLECTIVE DES MÉTHODES ÉLÉMENTS FINIS-ABC ET ÉLÉMENTS FINIS-INTÉGRALES DE FRONTIÈRE POUR LA DIFFRACTION EN ÉLECTROMAGNÉTISME

  • Published:
Annales Des Télécommunications Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This paper reviews two hybrid (frequency domain) finite element methods for electromagnetic scattering applications. Specifically, the progress over the last five years or so is reviewed as it pertains to the finite element method when combined with the boundary integral or the absorbing boundary conditions for truncating the computational domain. After a brief presentation of the associated mathematical formulations, we review two and three dimensional applications of the aforementioned methods. In addition, a brief review section on the popular element shape functions is included.

Résumé

Cet article présente deux méthodes ďéléments finis (en domaine fréquentiel) pour des applications de la diffraction en électromagnétisme. Le progrès sur les cinq dernières années fait par la méthode ďéléments finis pour la troncature du domaine de calcul grâce aux intégrales de frontière ou aux conditions absorbantes de frontière est analysé. Après une brève présentation des formulations mathématiques, des applications à deux et trois dimensions des méthodes présentées sont étudiées.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harrington (R. F.). Field computation by moment method.Macmillan, New York (1968).

    Google Scholar 

  2. Miller (E. K.), Medgyesi-Mitschang (L.), Newman (E. H.), eds. Computational electromagnetics: frequency-domain method of moments.IEEE Press, New York (1992).

    Google Scholar 

  3. Hansen (R. C.). Moment methods in antennas and scattering.Artech House, Norwood, MA (1990).

    Google Scholar 

  4. Senior (T. B. A.). Impedance boundary conditions for imperfectly conducting surfaces.Appl. Sci. Res. (1960),8B, pp. 418–446.

    Article  MathSciNet  Google Scholar 

  5. Senior (T. B. A.). Combined resistive and conductive sheets.IEEE Trans. AP (1985),33, pp. 577–579.

    Article  Google Scholar 

  6. Chatterjee (A.), Jin (J. M.), Volakis (J. L.). Edge-based finite elements and vector abcs applied to 3D scattering.IEEE Trans. AP (Feb. 1993),41, n° 2, pp. 221–226.

    Google Scholar 

  7. Bayliss (A.), Turkel (E.). Radiation boundary conditions for wave-like equations.Comm. Pure Appl. Math. (1980),33, pp. 707–725.

    Article  MATH  MathSciNet  Google Scholar 

  8. Engquist (B.), Majda (A.). Absorbing boundary conditions for the numerical simulation of waves.Math. Comp. (1977),31, pp. 629–651.

    Article  MATH  MathSciNet  Google Scholar 

  9. Givoli (D.). Numerical methods for problems in infinite domains.Elsevier, New York (1992).

    MATH  Google Scholar 

  10. Peterson (A. F.). Absorbing boundary conditions for the vector wave equation.Microwave and Opt. Techn. Letters (Apr. 1988),1, pp. 62–64.

    Article  Google Scholar 

  11. Webb (J. P.), Kanellopoulos (V. N.). Absorbing boundary conditions for finite element solution of the vector wave equation.Microwave and Opt. Techn. Letters (Oct. 1989),2, n° 10, pp. 370–372.

    Article  Google Scholar 

  12. Chatteriee (A.), Volakis (J. L.). Conformai absorbing boundary conditions for the vector wave equation.Microwave and Opt. Techn. Letters (Dec. 1993),6, n° 16, pp. 886–889.

    Article  Google Scholar 

  13. Trefethen (L. N.), Halpern (L.). Wide-angle one-way wave equations.J. Acoust. Soc. Amer. (Oct. 1988).

  14. Moore (T. G.), Blaschak (J. G.), Taflove (A.), Kriegsman (G. A.). Theory and application of radiation boundary conditions.IEEE Trans. AP (1988),36, pp. 1797–1812.

    Google Scholar 

  15. Silvester (P.), Hsieh (M. S.). Finite element solution of 2-dimensional exterior field problems.Proc. IEE (Dec. 1971),118, pp. 1743–1747.

    MathSciNet  Google Scholar 

  16. Mcdonald (B. H.), Wexler (A.). Finite element solution of unbounded field problems.IEEE Trans. MTT (Dec. 1972),20, pp. 841–847.

    Article  Google Scholar 

  17. Morgan (M. A.), Chen (C. H.), Hill (S. C.), Barber (P. W.). Finite element-boundary integral formulation for electromagnetic scattering.J. Wave Motion (1984),6, pp. 35–42.

    MathSciNet  Google Scholar 

  18. Jin (J. M.), Liepa (V. V.). A note on hybrid finite element method for solving scattering problems.IEEE Trans. AP (Oct. 1988),36, n° 10, pp. 1486–1490.

    Google Scholar 

  19. Jin (J. M.), Volakis (J. L.). A new technique for characterizing diffraction by inhomogeneously filled slots of arbitrary cross section in a thick conducting plane.IEE Electronics Letters (Aug. 1989),25, n° 17, pp. 1121–1122.

    Article  Google Scholar 

  20. Wu (K. L.), Delisle (G. Y.), Fang (D. G.), Lecours (M.). Coupled finite element and boundary element methods in electromagnetic scattering.In M. A. Morgan, editor, Finite element and finite difference method in electromagnetic scattering, chapter 3in Elsevier, New York (1990).

    Google Scholar 

  21. Yuan (X.), Lynch (D. R.), Strohbehn (J. W.). Coupling of finite element and moment methods for electromagnetic scattering from inhomogeneous objects.IEEE Trans. AP (mars 1990),38, pp. 386–393.

    Google Scholar 

  22. Schaubert (D. H.), Wilton (D. R.), Glisson (A. W.). A tetra-hedral modeling method for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies.IEEE Trans. AP (Jan. 1984), pp. 77–85.

  23. Tsai (C.), Massoudi (H.), Durney (C. H.), Iskander (M. F.). A procedure for calculating fields inside arbitrarily shaped inhomogeneous dielectric bodies using linear basis functions with the moment method.IEEE Trans. MTT (Nov. 1986),34, pp. 1131–1139.

    Article  Google Scholar 

  24. Webb (J. P.). Edge elements and what they can do for you.IEEE Trans. Magn. (1993),29, pp. 1460–1465.

    Article  Google Scholar 

  25. Whitney (H.). Geometric integration theory.Princeton University Press (1957).

  26. Nedelec (J. C.). Mixed finite elements in R3.Numer. Math. (1980),35, pp. 315–341.

    Article  MATH  MathSciNet  Google Scholar 

  27. Bossavit (A.), Verite (J. C.). A mixed fem-biem method to solve 3D eddy current problems.IEEE Trans. Magn. (Mar. 1982),18, pp. 431–435.

    Article  Google Scholar 

  28. Hano (M.). Finite element analysis of dielectric-loaded waveguides.IEEE Trans. MTT (Oct. 1984),32, pp. 1275–1279.

    Article  Google Scholar 

  29. Mur (G.), deHoop (A. T.). A finite element method for computing three-dimensional electromagnetic fields in inhomogeneous media.IEEE Trans. Magn. (Nov. 1985),21, pp. 2188–2191.

    Article  Google Scholar 

  30. Welij (J. S.van). Calculation of eddy currents in terms ofH on hexahedra.IEEE Trans. Magn. (Nov. 1985),21, pp. 2239–2241.

    Article  Google Scholar 

  31. Barton (M. L.), Cendes (Z. J.). New vector finite elements for three-dimensional magnetic field computation.J. Appl. Phys. (Apr. 1987),61, n° 8, pp. 3919–3921.

    Article  Google Scholar 

  32. Lee (J. F.), Sun (D. K.), Cendes (Z. J.). Full-wave analysis of dielectric waveguides using tangential vector finite elements.IEEE Trans. MTT (Aug. 1991),39, n° 8, pp. 1262–1271.

    Article  Google Scholar 

  33. Jin (J. M.), Volakis (J. L.). Electromagnetic scattering by and transmission through a three-dimensional slot in a thick conducting plane.IEEE Trans. AP (Apr. 1991),39, pp. 543–550.

    Google Scholar 

  34. Bossavit (A.). Whitney forms : a class of finite elements for three-dimensional computations in electromagnetism.IEE Proc. (Nov. 1988),135 A, n° 8.

  35. Lee (J. F.), Sun (D. K.), Cendes (Z. J.). Tangential vector finite elements for electromagnetic field computation.IEEE Trans. Magn. (Sep. 1991),27, n° 5, pp. 4032–4035.

    Article  Google Scholar 

  36. Wang (J. S.), Ida (N.). Curvilinear and higher orderedge finite elements in electromagnetic field computation.IEEE Trans. Magn. (Mar. 1993),29, n° 2, pp. 1491–1494.

    Article  Google Scholar 

  37. Webb (J. P.), Forghani (B.). Hierarchal scalar and vector tetra-hedra.IEEE Trans. Magn. (Mar. 1993),29, n° 2, pp. 1495–1498.

    Article  Google Scholar 

  38. Zienkiewicz (O. C.). The finite element method.McGraw Hill, New York, 3rd edition (1979).

    Google Scholar 

  39. Silvester (P. P.), Ferrari (R. L.). Finite elements for electrical engineers.Cambridge University Press, 2nd edition (1990).

  40. Chatterjee (A.), Volakis (J. L.), Windheiser (D.). Parallel computation of 3D electromagnetic scattering using finite elements.Int. J. Num. Modeling (1994),7, pp. 329–342.

    Article  Google Scholar 

  41. Jin (J. M.), Volakis (J. L.). Scattering and radiation from microstrip patch antennas and arrays residing in a cavity.IEEE Trans. AP (Nov. 1991),39, pp. 1598–1604.

    Google Scholar 

  42. Jin (J. M.), Volakis (J. L.). Scattering and radiation analysis of three-dimensional cavity arraysvia a hybrid finite element method.IEEE Trans. AP (Nov. 1993),41, pp. 1580–1586.

    Google Scholar 

  43. Volakis (J. L.), Gong (J.), Alexanian (A.). A finite element boundary integral method for antenna rcs analysis.Electromagnetics (1994),14, n° 1, pp. 63–85.

    Article  Google Scholar 

  44. Peterson (A. F.), Castillo (S. P.). A frequency-domain differential equation formulation for electromagnetic scattering from inhomogeneous cylinders.IEEE Trans. AP (May 1989),37, n° 5, pp. 601–607.

    Google Scholar 

  45. Peterson (A. F.), Baca (R. J.). Error in the finite element discretization of the scalar Helmholtz equation over electrically large regions.IEEE Microwave and Guided Wave Letters (Aug. 1991),1, n° 8, pp. 219–222.

    Article  Google Scholar 

  46. Behrmasel (L. J.), Whitaker (R. A.). Convergence of the finite element method as applied to electromagnetic scattering problems in the presence of inhomogeneous media.IEEE Trans. Magn. (Sep. 1991),27, n° 5, pp. 3845–3847.

    Article  Google Scholar 

  47. Lee (R.), Cangellaris (A. C.). A study of discretization error in the finite element approximation of wave solutions.IEEE Trans. AP (May 1992),40, n° 5, pp. 542–549.

    Google Scholar 

  48. Dangelo (J.), Mayergoyz (I. D.). Finite element methods for the solution of rf radiation and scattering problems.Electromagnetics (1990),10, pp. 177–199.

    Article  Google Scholar 

  49. Jin (J. M.), Volakis (J. L.), Liepa (V. V.). A fictitious absorber for truncating finite element meshes in scattering.IEE Proc. H (Oct. 1992),139, n° 5, pp. 472–476.

    Google Scholar 

  50. Lee (C. F.), Shin (R. T.), Kong (J. A.). Absorbing boundary conditions on circular and elliptical boundaries.J. Electromagn. Waves Appl. (1990),4, n° 10, pp. 945–962.

    Article  Google Scholar 

  51. Mittra (R.), Ramahi (O.), Khebir (A.), Gordon (R.), Kouki (A.). A review of absorbing boundary conditions for two and three-dimensional electromagnetic scattering problems.IEEE Trans. Magn. (Jul. 1989),25, n° 4, pp. 3034–3039.

    Article  Google Scholar 

  52. Ma (Y. C.). A note on the radiation boundary conditions for the Helmholtz equation.IEEE Trans. AP (Oct. 1991),39, n° 10, pp. 1526–1530.

    MATH  Google Scholar 

  53. Hanouzet (B.), Sesques (M.). Effect of curvature terms on artificial boundary conditions for Maxwell’s equations.CR Acad. Sc. Serie 1, Mathématique (1990),311, n° 9, pp. 561–564.

    MATH  MathSciNet  Google Scholar 

  54. Jones (D. S.). An improved surface radiation condition.IMA J. Appl. Math. (1992),48, pp. 163–193.

    Article  MATH  MathSciNet  Google Scholar 

  55. Senior (T. B. A.), Volakis (J. L.). Approximate boundary conditions in electromagnetics.IEE Press, London (1995).

    MATH  Google Scholar 

  56. Rytov (S. M.). Computation of the skin effect by the perturbation method.J. Exp. Theor. Phys. (1940),10, p. 180 (translation by V. Kerdemelidis and K. M. Mitzner).

    Google Scholar 

  57. Mei (K. K.), Pous (R.), Chen (Z.), Liu (Y. W.). The measured equation of invariance: a new concept in field computation.IEEE Trans. AP (March 1994),42, n° 3, pp. 320–328.

    Google Scholar 

  58. Cangellaris (A. C.), Wright (D. B.). MEi-based mesh truncation conditions for the finite element modeling of electromagnetic scattering by 2D penetrable objects.URSI Radio Science Meeting Digest. Ann Arbor, MI (1993), p. 258.

  59. Gordon (R.), Mittra (R.), Glisson (A.), Michielssen (E.). Finite element analysis of electromagnetic scattering by complex bodies using an efficient numerical boundary condition for mesh truncation.IEE Electron. Lett. (June 1993),29, n° 12, pp. 1102–1103.

    Article  Google Scholar 

  60. Gordon (R. K.), Mittra (R.). pde techniques for solving the problem of radar scattering by a body of revolution.IEE Proc. H (Oct. 1991),79, n° 10.

  61. Khebir (A.), D’angelo (J.), Joseph (J.). A new finite element formulation for rf scattering by complex bodies of revolution.IEEE Trans. AP (Aug. 1993), pp. 535–541.

  62. Chatterjee (A.), Volakis (J. L.), Windheiser (D.). 3D electromagnetic scattering computation in parallel using edge-based finite elements and conformai abcs.IEEE Trans. Magn.

  63. Stupfel (B.). Absorbing boundary conditions on arbitrary boundaries for the scalar and vector wave equation.IEEE Trans. AP (June 1994),42, n° 6, pp. 773–780.

    MATH  MathSciNet  Google Scholar 

  64. Kempel (L. C.), Volakis (J. L.). Evaluation of new vector abcs for conformai printed antennas.URSI Radio Science Meeting Digest., Seattle, WA (1994).

  65. Ozdemir (T.), Volakis (J. L.). A comparative study of an abc and an artificial absorber for truncating finite element meshes.Radio Science.

  66. Romate (J. E.). Absorbing boundary conditions for free surface waves.J. Comput. Phys. (1992),99, pp. 135–145.

    Article  MATH  MathSciNet  Google Scholar 

  67. Higdon (R. L.). Numerical absorbing boundary conditions for the wave equation.Mathematics of Computation (1987),49, pp. 65–90.

    Article  MATH  MathSciNet  Google Scholar 

  68. Liao (Z. P.), Wong (H. L.), Yang (B. P.), Yuan (Y. F.). A transmitting boundary for transient wave analysis.Scientia Sinica (Oct. 1984),28, n° 10, pp. 1063–1076.

    Google Scholar 

  69. Mackerle (J.), Brebbia (C. A.). The boundary element reference book.Springer-Verlag, New York (1988).

    MATH  Google Scholar 

  70. Jin (J. M.), Volakis (J. L.), Collins (J. D.). A finite element-boundary integral method for scattering and radiation by two- and three-dimensional structures.IEEE AP Soc. Mag. (June 1991),33, n° 3, pp. 22–32.

    Google Scholar 

  71. Pearson (L. W.), Peterson (A. F.), Behrmasel (L. J.), Whitaker (R. A.). Inward-looking and outward-looking formulations for scattering from penetrable objects.IEEE Trans. AP (1992),40, pp. 714–720.

    Google Scholar 

  72. Mei (K. K.). Unimoment method for electromagnetic wave scattering.J. Electromagn. Waves Appl. (1987),1, pp. 201–222.

    Article  Google Scholar 

  73. Collins (J. D.), Jin (J. M.), Volakis (J. L.). A combined finite element-boundary element formulation for solution of two-dimensional problemsvia CGFFT.Electromagnetics (1990),10, pp. 423–437.

    Article  Google Scholar 

  74. Collins (J. D.), Volakis (J. L.), Jin (J. M.). A combined finite element-boundary element formulation for solution of two-dimensional scattering problemsvia CGFFT.IEEE Trans. AP (1990),38, pp. 1852–1858.

    Google Scholar 

  75. Barkeshli (K.), Volakis (J. L.). On the implementation and accuracy of the conjugate gradient fft method.IEEE Trans. AP (1990),32, pp. 20–26.

    Google Scholar 

  76. Jin (J. M.), Volakis (J. L.). Biconjugate gradient fft solution for scattering by planar plates.Electromagnetics (1992),12, pp. 105–119.

    Article  Google Scholar 

  77. Jin (J. M.), Volakis (J. L.). TE scattering by an inhomogeneously filled aperture in a thick conducting plane.IEEE Trans. AP (Aug. 1990),38, pp. 1280–1286.

    Google Scholar 

  78. Ramahi (O. M.), Mittra (R.). Finite element solution for a class of unbounded geometries.IEEE Trans. AP (1991),39, pp. 244–250.

    Google Scholar 

  79. Jeng (S. K.). Scattering from a cavity-backed slit in a ground plane — te case.IEEE Trans. AP (1990),38, pp. 1523–1529.

    Google Scholar 

  80. Gedney (S. D.), Lee (J. F.), Mittra (R.). A combined fem/mom approach to analyze the plane wave diffraction by arbitrary gratings.IEEE Trans. MTT (1992),40, pp. 363–370.

    Article  Google Scholar 

  81. Pelosi (G.), Freni (A.), Coccioli (R.). A hybrid technique for analyzing the scattering from periodic structures.IEE Proc. H (1993),140, pp. 65–70.

    Google Scholar 

  82. Mautz (J. R.), Harrington (R. F.). H-field, E-field and combined-field solutions for conducting bodies of revolution.AEU (1978),32, pp. 157–163.

    Google Scholar 

  83. Peterson (A. F.). The interior resonance problem associated with surface integral equations of electromagnetics: numerical consequences and a survey of remedies.Electromagnetics (1990),10, pp. 293–312.

    Article  Google Scholar 

  84. Wilton (D. R.), Wheeler (J. E.) III. Comparison of convergence rates of the conjugate gradient method applied to various integral equation formulations.In T. K. Sarkar, editor,Application of conjugate gradient method to electromagnetics and signal analysis, chapter 5in Elsevier, New York (1990).

    Google Scholar 

  85. Stupfel (B.), Le Martret (P.), Bonnemason (P.), Scheurer (B.). Solution of the scattering problem by axisymmetrical penetrable objects with a mixed boundary-element and finite-element method.Proc. JINA (1990), pp. 116–120.

  86. Collins (J. D.). Ph.D. Thesis.Ph.D. Thesis, Univ. Michigan, Ann Arbor (1992).

    Google Scholar 

  87. Collins (J. D.), Jin (J. M.), Volakis (J. L.). Eliminating interior resonances in fe-bi methods for scattering.IEEE Trans. AP (Dec. 1992),40, pp. 1583–1585.

    Google Scholar 

  88. Yuan (X.). Three-dimensional electromagnetic scattering from inhomogeneous objects by the hybrid moment and finite element method.IEEE Trans. AP (1990),38, pp. 1053–1058.

    Google Scholar 

  89. Jin (J. M.), Volakis (J. L.). A hybrid finite element method for scattering and radiation by microstrip patch antennas and arrays residing in a cavity.IEEE Trans. AP (1991),39, pp. 1598–1604.

    Google Scholar 

  90. Jin (J. M.), Volakis (J. L.). A scheme to lower the resonant frequency of the microstrip patch antenna.IEEE Trans. MGWL (July 1992),2, n° 7, pp. 292–294.

    Google Scholar 

  91. Jin (J. M.), Volakis (J. L.). Scattering and radiation analysis of three-dimensional cavity arraysvia a hybrid finite element method.IEEE Trans. AP (Nov. 1993),41.

  92. Antilla (G. E.), Alexopoulos (N. G.). Scattering from complex three-dimensional geometries by a curvilinear hybrid finite element-integral equation approach.J. Opt. Soc. Am. A (Apr. 1994),11, n° 4, pp. 1445–1457.

    Article  Google Scholar 

  93. Angelini (J.), Soize (C.), Soudais (P.). Hybrid numerical method for harmonic 3D Maxwell equations: scattering by a mixed conducting and inhomogeneous anisotropic dielectric medium.IEEE Trans. AP (Jan. 1993),41, n° 1, pp. 66–76.

    Google Scholar 

  94. Fontana (T.), Lucas (E.). The inclusion of resistive sheets in a 3D vector finite element analysis of a doubly infinite periodic array.URSI Radio Science Meeting Digest., Ann Arbor, MI (1993), p. 192.

  95. Mei (K. K.). Unimoment method of solving antenna and scattering problems.IEEE Trans. AP (1974),22, pp. 760–766.

    Google Scholar 

  96. Cangellaris (A. C.), Lee (R.). The bymoment method for two-dimensional electromagnetic scattering.IEEE Trans. AP (1990),38, pp. 1429–1437.

    Google Scholar 

  97. Lee (J. F.), Sun (D. K.), Cendes (Z. J.). Full-wave analysis of dielectric waveguides using tangential vector finite elements.IEEE Trans. MTT (Aug. 1991),39, n° 8, pp. 1262–1271.

    Article  Google Scholar 

  98. Paulsen (K.), Jia (X.), Lynch (D. R.). Finite element computations of specific absorption rates in anatomically-conforming full-body models for hyperthermia treatment analysis.IEEE Trans. BE (Sep. 1993),40, pp. 933–945.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volakis, J.L., Chatterjee, A. A selective review of the finite element-ABC and the finite element-boundary integral methods for electromagnetic scattering. Ann. Télécommun. 50, 499–509 (1995). https://doi.org/10.1007/BF02995749

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02995749

Key words

Mots clés

Navigation